1
|
Smith EA, Belote RL, Cruz NM, Moustafa TE, Becker CA, Jiang A, Alizada S, Prokofyeva A, Chan TY, Seasor TA, Balatico M, Cortes-Sanchez E, Lum DH, Hyngstrom JR, Zeng H, Deacon DC, Grossmann AH, White RM, Zangle TA, Judson-Torres RL. Receptor tyrosine kinase inhibition leads to regression of acral melanoma by targeting the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:317. [PMID: 39627834 PMCID: PMC11613472 DOI: 10.1186/s13046-024-03234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. METHODS An independent analysis of published sequencing data was performed to evaluate the frequency of receptor tyrosine kinase (RTK) ligands and adapter protein gene variants and expression. To target these genetic variants, a zebrafish acral melanoma model and preclinical patient-derived xenograft (PDX) mouse models were treated with a panel of RTK inhibitors. Residual PDX tumors were evaluated for changes in proliferation, vasculature, necrosis, and ferroptosis by histology and immunohistochemistry. RESULTS RTK ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. Dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration in zebrafish, and the potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM PDX tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. CONCLUSION Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Rachel L Belote
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek E Moustafa
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Carly A Becker
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Amanda Jiang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Shukran Alizada
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Tsz Yin Chan
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tori A Seasor
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael Balatico
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Immuno Oncology Network Core, The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John R Hyngstrom
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hanlin Zeng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekker C Deacon
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Medicine, Ludwig Cancer Research, University of Oxford, Oxford, UK
| | - Thomas A Zangle
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Smith EA, Belote RL, Cruz NM, Moustafa TE, Becker CA, Jiang A, Alizada S, Chan TY, Seasor TA, Balatico M, Cortes-Sanchez E, Lum DH, Hyngstrom JR, Zeng H, Deacon DC, Grossmann AH, White RM, Zangle TA, Judson-Torres RL. Receptor tyrosine kinase inhibition leads to regression of acral melanoma by targeting the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599116. [PMID: 38948879 PMCID: PMC11212935 DOI: 10.1101/2024.06.15.599116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. Independent analysis of published genomic and transcriptomic sequencing identified that receptor tyrosine kinase (RTK) ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. To target these unique genetic changes, a zebrafish acral melanoma model was exposed to a panel of narrow and broad spectrum multi-RTK inhibitors, revealing that dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration. The potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM patient-derived xenograft (PDX) tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Rachel L Belote
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek E Moustafa
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Carly A Becker
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Amanda Jiang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Shukran Alizada
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tsz Yin Chan
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tori A Seasor
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael Balatico
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Immuno Oncology Network Core, The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John R Hyngstrom
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hanlin Zeng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekker C Deacon
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford UK
| | - Thomas A Zangle
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Huang L, Zuo Y, Li S, Li C. Melanocyte stem cells in the skin: Origin, biological characteristics, homeostatic maintenance and therapeutic potential. Clin Transl Med 2024; 14:e1720. [PMID: 38778457 PMCID: PMC11111606 DOI: 10.1002/ctm2.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Melanocyte stem cells (MSCs), melanocyte lineage-specific skin stem cells derived from the neural crest, are observed in the mammalian hair follicle, the epidermis or the sweat gland. MSCs differentiate into mature melanin-producing melanocytes, which confer skin and hair pigmentation and uphold vital skin functions. In controlling and coordinating the homeostasis, repair and regeneration of skin tissue, MSCs play a vital role. Decreased numbers or impaired functions of MSCs are closely associated with the development and therapy of many skin conditions, such as hair graying, vitiligo, wound healing and melanoma. With the advancement of stem cell technology, the relevant features of MSCs have been further elaborated. In this review, we provide an exhaustive overview of cutaneous MSCs and highlight the latest advances in MSC research. A better understanding of the biological characteristics and micro-environmental regulatory mechanisms of MSCs will help to improve clinical applications in regenerative medicine, skin pigmentation disorders and cancer therapy. KEY POINTS: This review provides a concise summary of the origin, biological characteristics, homeostatic maintenance and therapeutic potential of cutaneous MSCs. The role and potential application value of MSCs in skin pigmentation disorders are discussed. The significance of single-cell RNA sequencing, CRISPR-Cas9 technology and practical models in MSCs research is highlighted.
Collapse
Affiliation(s)
- Luling Huang
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yuzhi Zuo
- Department of Plastic and Burns SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Shuli Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chunying Li
- Department of DermatologyXijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
5
|
Nojima K, Hayashi M, Tanemura A, Al-Busani H, Saito T, Suzuki T, Ishikawa M, Mori T, Wada S, Yamazaki N, Katayama I, Mori H, Yokozeki H, Okiyama N, Sasaki Y, Namiki T. Activated Akt expression is associated with the recurrence of primary melanomas and further refines the prognostic and predictive values for relapse in acral melanomas. Pigment Cell Melanoma Res 2024; 37:36-44. [PMID: 37596787 DOI: 10.1111/pcmr.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023]
Abstract
A PTEN deficiency leads to the activation of phospho-Akt at serine 473 (p-Akt) and promotes the tumorigenesis of melanomas by coupling with NUAK2 amplification. We tested the prognostic impact of p-Akt and/or NUAK2 expression on the relapse-free survival (RFS) and overall survival (OS) of melanoma patients. Primary tumors from patients with acral melanomas (112), Low-cumulative sun damage (CSD) melanomas (38), and High-CSD melanomas (18) were examined using immunohistochemistry and their prognostic significance was analyzed statistically. The expression of p-Akt was found in 32.1%, 68.4%, and 55.6% of acral, Low-CSD, and High-CSD melanomas, while NUAK2 expression was found in 46.4%, 76.3%, and 50.0%, respectively. Either p-Akt or NUAK2 expression was inversely correlated with the RFS of primary melanoma patients and acral melanoma patients (p-Akt: p < .0001, p < .0001; NUAK2; p = .0005, p < .0001, respectively). Strikingly, multivariate analyses revealed that p-Akt had a significant impact on RFS (Hazard ratio = 4.454; p < .0001), while NUAK2 did not. Further subset analyses revealed that p-Akt expression had an inferior RFS of patients with acral melanomas (Hazard ratio = 4.036; p = .0005). We conclude that the expression of p-Akt has a significant impact on RFS of patients with primary melanomas and can predict the relapse of patients with acral melanomas.
Collapse
Affiliation(s)
- Kohei Nojima
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Hayashi
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hind Al-Busani
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toru Saito
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masashi Ishikawa
- Department of Dermatology, Saitama Cancer Center, Saitama, Japan
| | - Taisuke Mori
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shogo Wada
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Skin Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Yamazaki
- Department of Skin Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Mori
- Department of Plastic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiyuki Sasaki
- Clinical Dental Research Promotion Unit, Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Namiki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Nazir ZH, Haliasos HC, Busam KJ, Marchetti MA, Linos K, Marghoob AA. Acquired Melanocytic Nevi Mimicking Acral Lentiginous Melanoma in a Patient Taking a BRAF Inhibitor. JAMA Dermatol 2023; 159:1147-1149. [PMID: 37672258 DOI: 10.1001/jamadermatol.2023.2669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This case report describes a patient in their 60s with metastatic colon cancer who developed multiple new dark nevi within 2 months of initiating encorafenib and panitumumab therapy.
Collapse
Affiliation(s)
- Zaeem H Nazir
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Helen C Haliasos
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Klaus J Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A Marchetti
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashfaq A Marghoob
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
7
|
Yeh I. Melanocytic naevi, melanocytomas and emerging concepts. Pathology 2023; 55:178-186. [PMID: 36642570 DOI: 10.1016/j.pathol.2022.12.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
With the elucidation of the genetics of melanocytic tumours, new concepts have emerged. An important one is the identification of 'intermediate' melanocytic tumours, those with genetic progression events beyond those of melanocytic naevi but that are not fully malignant. Thus, melanocytic tumours exist on a genetic spectrum that likely corresponds to biological behaviour. There are multiple pathways to melanoma development with different initiating events and characteristic benign melanocytic neoplasms and the precise placement of tumours on these pathways remains to be established and the corresponding risks of progression quantified. In this review, I discuss the classification of melanocytic naevi based on clinical, histopathological and genetic features, as well as the concept of melanocytomas with discussion of specific recognisable subtypes.
Collapse
Affiliation(s)
- Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Nasrin M, Ahmed O, Han X, Nojebuzzaman M, Abo-Ahmed AI, Yazawa S, Osawa M. Generation of Pmel-dependent conditional and inducible Cre-driver mouse line for melanocytic-targeted gene manipulation. Pigment Cell Melanoma Res 2023; 36:53-70. [PMID: 36318272 DOI: 10.1111/pcmr.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Conditional and inducible gene targeting using Cre/loxP-mediated recombination is a powerful reverse genetics approach used to study spatiotemporal gene functions in specified cell types. To enable temporal gene manipulation in the melanocyte lineage, we established a novel inducible Cre-driver mouse line by targeting an all-in-one tetracycline/doxycycline (Dox)-inducible Cre expression cassette into the Pmel locus (PmelP2A-TetON3G-TRE3G-iCre ), a gene locus preferentially expressed in pigment cells. By crossing these Cre-driver mice with a strong Cre-reporter mouse line, Gt(ROSA)26Sortm9(CAG-tdTomato)Hze , we show the effectiveness of the PmelP2A-TetON3G-TRE3G-iCre mouse line in facilitating Dox-inducible Cre/loxP recombination in a wide variety of pigment cell lineages including hair follicle melanocytes and their stem cells. Furthermore, to demonstrate proof of concept, we ablated Notch signaling postnatally in the PmelP2A-TetON3G-TRE3G-iCre mice. In agreement with the previously reported phenotype, induced ablation of Notch signaling in the melanocyte lineage resulted in premature hair graying, demonstrating the utility of the PmelP2A-TetON3G-TRE3G-iCre allele. Therefore, the PmelP2A-TetON3G-TRE3G-iCre mouse line is suitable for assessing gene functions in melanocytes using an in vivo inducible reverse genetics approach. Furthermore, we unexpectedly identified previously unrecognized PMEL-expressing cells in non-pigmentary organs in the mice, suggesting unanticipated functions of PMEL other than melanosome formation.
Collapse
Affiliation(s)
- Morsheda Nasrin
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Xujun Han
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Md Nojebuzzaman
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ahmed I Abo-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shigenobu Yazawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masatake Osawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
9
|
Yu Q, Aimaier R, Chung MH, Cui X, Li Y, Wang Z, Li Q. Establishment and characterization of an immortalized human giant congenital melanocytic nevi cell line. Pigment Cell Melanoma Res 2022; 35:356-368. [PMID: 35218152 DOI: 10.1111/pcmr.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Treatments for giant congenital melanocytic nevi (GCMN) are extremely limited. Thus, there is an urgent need for development of relevant targeted therapies. However, current lack of preclinical cell models restricts progress in GCMN research. In this study, we aimed to establish and characterize an immortalized GCMN cell line. GCMN cells were successfully immortalized by means of lentivirus-mediated simian virus 40 large T transfection. The immortalized GNC cell line (ImGNC) showed lower proliferation rate and higher melanin content than primary melanocytes. Expression levels of the differentiation gene MITF and stemness genes TWIST1, SNAI1, and FOXD3 were elevated in ImGNCs; however, the established ImGNC cell line was immortalized but not transformed. Sanger sequencing detected the heterozygous NRASQ61K mutation in ImGNCs, but not the BRAFV600E mutation. Despite carrying the NRASQ61K allele, ImGNCs demonstrated suppressed MAPK activation and elevated PI3K/Akt activation, as compared with primary melanocytes. Drug sensitivity analysis showed that ImGNCs are more sensitive to PI3K/Akt and Bcl-2 inhibitors than to MEK or ERK inhibitors. Unlike the proliferation-inhibiting effect of PI3K/Akt inhibitors, the Bcl-2 inhibitor navitoclax promptly promoted apoptosis in ImGNCs. Considering the low proliferation characteristics of GCMN in vivo, Bcl-2 may be a potential therapeutic target that warrants further research.
Collapse
Affiliation(s)
- Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiwei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Weiss JM, Hunter MV, Cruz NM, Baggiolini A, Tagore M, Ma Y, Misale S, Marasco M, Simon-Vermot T, Campbell NR, Newell F, Wilmott JS, Johansson PA, Thompson JF, Long GV, Pearson JV, Mann GJ, Scolyer RA, Waddell N, Montal ED, Huang TH, Jonsson P, Donoghue MTA, Harris CC, Taylor BS, Xu T, Chaligné R, Shliaha PV, Hendrickson R, Jungbluth AA, Lezcano C, Koche R, Studer L, Ariyan CE, Solit DB, Wolchok JD, Merghoub T, Rosen N, Hayward NK, White RM. Anatomic position determines oncogenic specificity in melanoma. Nature 2022; 604:354-361. [PMID: 35355015 PMCID: PMC9355078 DOI: 10.1038/s41586-022-04584-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2022] [Indexed: 12/19/2022]
Abstract
Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.
Collapse
Affiliation(s)
- Joshua M Weiss
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Miranda V Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arianna Baggiolini
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohita Tagore
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yilun Ma
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Simon-Vermot
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel R Campbell
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily D Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip Jonsson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher C Harris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianhao Xu
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pavel V Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cecilia Lezcano
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Colombo S, Petit V, Wagner RY, Champeval D, Yajima I, Gesbert F, Aktary Z, Davidson I, Delmas V, Larue L. Stabilization of β-catenin promotes melanocyte specification at the expense of the Schwann cell lineage. Development 2021; 149:274086. [PMID: 34878101 PMCID: PMC8917410 DOI: 10.1242/dev.194407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
The canonical Wnt/β-catenin pathway governs a multitude of developmental processes in various cell lineages, including the melanocyte lineage. Indeed, β-catenin regulates transcription of Mitf-M, the master regulator of this lineage. The first wave of melanocytes to colonize the skin is directly derived from neural crest cells, whereas the second wave of melanocytes is derived from Schwann cell precursors (SCPs). We investigated the influence of β-catenin in the development of melanocytes of the first and second waves by generating mice expressing a constitutively active form of β-catenin in cells expressing tyrosinase. Constitutive activation of β-catenin did not affect the development of truncal melanoblasts but led to marked hyperpigmentation of the paws. By activating β-catenin at various stages of development (E8.5-E11.5), we showed that the activation of β-catenin in bipotent SCPs favored melanoblast specification at the expense of Schwann cells in the limbs within a specific temporal window. Furthermore, in vitro hyperactivation of the Wnt/β-catenin pathway, which is required for melanocyte development, induces activation of Mitf-M, in turn repressing FoxD3 expression. In conclusion, β-catenin overexpression promotes SCP cell fate decisions towards the melanocyte lineage. Summary: Activation of β-catenin in bipotent Schwann cell precursors during a specific developmental window induces Mitf and represses FoxD3 to promote melanoblast cell fate at the expense of Schwann cells in limbs.
Collapse
Affiliation(s)
- Sophie Colombo
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Valérie Petit
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Roselyne Y Wagner
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Delphine Champeval
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Ichiro Yajima
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Franck Gesbert
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Zackie Aktary
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Irwin Davidson
- Equipes Labellisées Ligue Contre le Cancer, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404 Illkirch Cedex. Department of Functional Genomics and Cancer, France
| | - Véronique Delmas
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| |
Collapse
|