1
|
Chen T, Lu J, Fan Q. lncRNA TUG1 and kidney diseases. BMC Nephrol 2025; 26:139. [PMID: 40108517 PMCID: PMC11924614 DOI: 10.1186/s12882-025-04047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) cover a large class of transcribed RNA molecules that are more than 200 nucleotides in length. An increasing number of studies have shown that lncRNAs control gene expression through different mechanisms and play important roles in a range of biological processes including growth, cell differentiation, proliferation, apoptosis, and invasion. TUG1 was originally discovered in a genomic screen of taurine-treated mouse retinal cells. Previous evidences pointed out that lncRNA TUG1 could inhibit apoptosis and the release of inflammatory factors, improve mitochondrial function, thereby protecting cells from damage, and showing a protective role of TUG1 in diseases. Given that TUG1 has multiple targets and can interfere with multiple steps in the oncogenic process, it has been proposed as a therapeutic target. In this review, we summarize the research progress of lncRNA TUG1 in kidney diseases in the past 8 years, and discuss its related molecular mechanisms.
Collapse
Affiliation(s)
- Tong Chen
- Department of Nephrology, Shenyang Seventh People's Hospital, Shenyang, 110003, Liaoning, China
| | - Jian Lu
- Department of Nephrology, Shenyang Seventh People's Hospital, Shenyang, 110003, Liaoning, China
| | - Qiuling Fan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200940, China.
| |
Collapse
|
2
|
Li L, Wu YQ, Yang JE. Stress-Related LncRNAs and Their Roles in Diabetes and Diabetic Complications. Int J Mol Sci 2025; 26:2194. [PMID: 40076814 PMCID: PMC11900361 DOI: 10.3390/ijms26052194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most significant global health burdens worldwide. Key pathophysiological mechanisms underlying its onset and associated complications include hyperglycemia-related stresses, such as oxidative stress and endoplasmic reticulum stress (ER stress). Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides and lacking protein-coding capacity, play crucial roles in various biological processes and have emerged as crucial regulators in the pathogenesis of diabetes. This review provides a comprehensive overview of lncRNA biogenesis and its functional roles, emphasizing recent findings that link stress-related lncRNAs to diabetic pathology and complications. Also, we discuss how lncRNAs influence diabetes and its complications by modulating pathways involved in cell death, proliferation, inflammation, and fibrosis, which contribute to pancreatic β cell dysfunction, insulin resistance, diabetic nephropathy, and retinopathy. By analyzing current research, we aim to enhance understanding of lncRNA involvement in diabetes while identifying potential therapeutic targets and guiding future research directions to elucidate the complex mechanisms underlying this pervasive condition.
Collapse
Affiliation(s)
| | | | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, China; (L.L.); (Y.-Q.W.)
| |
Collapse
|
3
|
Gupta P, Zhu S, Gui Y, Zhou D. Metabolic Chaos in Kidney Disease: Unraveling Energy Dysregulation. J Clin Med 2024; 13:6772. [PMID: 39597916 PMCID: PMC11594442 DOI: 10.3390/jcm13226772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) and chronic kidney disease (CKD) share a fundamental disruption: metabolic dysfunction. METHODS A literature review was performed to determine the metabolic changes that occur in AKI and CKD as well as potential therapeutic targets related to these changes. RESULTS In AKI, increased energy demand in proximal tubular epithelial cells drives a shift from fatty acid oxidation (FAO) to glycolysis. Although this shift offers short-term support, it also heightens cellular vulnerability to further injury. As AKI progresses to CKD, metabolic disruption intensifies, with both FAO and glycolysis becoming downregulated, exacerbating cellular damage and fibrosis. These metabolic alterations are governed by shifts in gene expression and protein signaling pathways, which can now be precisely analyzed through advanced omics and histological methods. CONCLUSIONS This review examines these metabolic disturbances and their roles in disease progression, highlighting therapeutic interventions that may restore metabolic balance and enhance kidney function. Many metabolic changes that occur in AKI and CKD can be utilized as therapeutic targets, indicating a need for future studies related to the clinical utility of these therapeutics.
Collapse
Affiliation(s)
- Priya Gupta
- School of Medicine, University of Connecticut, Farmington, CT 06030, USA;
| | - Saiya Zhu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; (S.Z.); (Y.G.)
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; (S.Z.); (Y.G.)
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, USA; (S.Z.); (Y.G.)
| |
Collapse
|
4
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Mise K, Long J, Galvan DL, Ye Z, Fan G, Sharma R, Serysheva II, Moore TI, Jeter CR, Anna Zal M, Araki M, Wada J, Schumacker PT, Chang BH, Danesh FR. NDUFS4 regulates cristae remodeling in diabetic kidney disease. Nat Commun 2024; 15:1965. [PMID: 38438382 PMCID: PMC10912198 DOI: 10.1038/s41467-024-46366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.
Collapse
Affiliation(s)
- Koki Mise
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Jianyin Long
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel L Galvan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zengchun Ye
- Division of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rajesh Sharma
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Anna Zal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Benny H Chang
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad R Danesh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Geng M, Liu W, Li J, Yang G, Tian Y, Jiang X, Xin Y. LncRNA as a regulator in the development of diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1324393. [PMID: 38390204 PMCID: PMC10881719 DOI: 10.3389/fendo.2024.1324393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia, which induces the production of AGEs, ROS, inflammatory cytokines, and growth factors, leading to the formation of vascular dysfunction and target organ damage, promoting the development of diabetic complications. Diabetic nephropathy, retinopathy, and cardiomyopathy are common complications of diabetes, which are major contributors to disability and death in people with diabetes. Long non-coding RNAs affect gene transcription, mRNA stability, and translation efficiency to influence gene expression for a variety of biological functions. Over the past decade, it has been demonstrated that dysregulated long non-coding RNAs are extensively engaged in the pathogenesis of many diseases, including diabetic complications. Thus, this review discusses the regulations of long non-coding RNAs on the primary pathogenesis of diabetic complications (oxidative stress, inflammation, fibrosis, and microvascular dysfunction), and some of these long non-coding RNAs may function as potential biomarkers or therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Mengrou Geng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
7
|
Wu Q, Huang F. LncRNA H19: a novel player in the regulation of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1238981. [PMID: 37964955 PMCID: PMC10641825 DOI: 10.3389/fendo.2023.1238981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetic kidney disease (DKD), one of the most severe complications of diabetes mellitus (DM), has received considerable attention owing to its increasing prevalence and contribution to chronic kidney disease (CKD) and end-stage kidney disease (ESRD). However, the use of drugs targeting DKD remains limited. Recent data suggest that long non-coding RNAs (lncRNAs) play a vital role in the development of DKD. The lncRNA H19 is the first imprinted gene, which is expressed in the embryo and down-regulated at birth, and its role in tumors has long been a subject of controversy, however, in recent years, it has received increasing attention in kidney disease. The LncRNA H19 is engaged in the pathological progression of DKD, including glomerulosclerosis and tubulointerstitial fibrosis via the induction of inflammatory responses, apoptosis, ferroptosis, pyroptosis, autophagy, and oxidative damage. In this review, we highlight the most recent research on the molecular mechanism and regulatory forms of lncRNA H19 in DKD, including epigenetic, post-transcriptional, and post-translational regulation, providing a new predictive marker and therapeutic target for the management of DKD.
Collapse
Affiliation(s)
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Li L, Long J, Mise K, Poungavrin N, Lorenzi PL, Mahmud I, Tan L, Saha PK, Kanwar YS, Chang BH, Danesh FR. The transcription factor ChREBP links mitochondrial lipidomes to mitochondrial morphology and progression of diabetic kidney disease. J Biol Chem 2023; 299:105185. [PMID: 37611830 PMCID: PMC10506103 DOI: 10.1016/j.jbc.2023.105185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
A substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes. We find that inducible podocyte-specific knockdown of ChREBP in diabetic db/db mice improves key biochemical and histological features of DKD in addition to significantly reducing mitochondrial fragmentation. Because of the critical role of ChREBP in lipid metabolism, we interrogated whether and how mitochondrial lipidomes play a role in ChREBP-mediated mitochondrial fission. Our findings suggest a key role for a family of ether phospholipids in ChREBP-induced mitochondrial remodeling. We find that overexpression of glyceronephosphate O-acyltransferase, a critical enzyme in the biosynthesis of plasmalogens, reverses the protective phenotype of ChREBP deficiency on mitochondrial fragmentation. Finally, our data also points to Gnpat as a direct transcriptional target of ChREBP. Taken together, our results uncover a distinct mitochondrial lipid signature as the link between ChREBP-induced mitochondrial dynamics and progression of DKD.
Collapse
Affiliation(s)
- Li Li
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyin Long
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naravat Poungavrin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Diabetes Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
9
|
Ajalbert G, Brenna A, Ming XF, Yang Z, Potenza DM. Elevation of Arginase-II in Podocytes Contributes to Age-Associated Albuminuria in Male Mice. Int J Mol Sci 2023; 24:11228. [PMID: 37446405 PMCID: PMC10342439 DOI: 10.3390/ijms241311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
One of the manifestations of renal aging is podocyte dysfunction and loss, which are associated with proteinuria and glomerulosclerosis. Studies show a male bias in glomerular dysfunction and chronic kidney diseases, and the underlying mechanisms remain obscure. Recent studies demonstrate the role of an age-associated increase in arginase-II (Arg-II) in proximal tubules of both male and female mice. However, it is unclear whether Arg-II is also involved in aging glomeruli. The current study investigates the role of the sex-specific elevation of Arg-II in podocytes in age-associated increased albuminuria. Young (3-4 months) and old (20-22 months) male and female mice of wt and arginase-II knockout (arg-ii-/-) were used. Albuminuria was employed as a readout of glomerular function. Cellular localization and expression of Arg-II in glomeruli were analyzed using an immunofluorescence confocal microscope. A more pronounced age-associated increase in albuminuria was found in male than in female mice. An age-associated induction of Arg-II in glomeruli and podocytes (as demonstrated by co-localization of Arg-II with the podocyte marker synaptopodin) was also observed in males but not in females. Ablation of the arg-ii gene in mice significantly reduces age-associated albuminuria in males. Also, age-associated decreases in podocyte density and glomerulus hypertrophy are significantly prevented in male arg-ii-/- but not in female mice. However, age-associated glomerulosclerosis is not affected by arg-ii ablation in both sexes. These results demonstrate a role of Arg-II in sex-specific podocyte injury in aging. They may explain the sex-specific differences in the development of renal disease in humans during aging.
Collapse
Affiliation(s)
| | | | | | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (G.A.); (A.B.); (X.-F.M.)
| | - Duilio M. Potenza
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (G.A.); (A.B.); (X.-F.M.)
| |
Collapse
|
10
|
Mise K, Long J, Galvan DL, Ye Z, Fan G, Serysheva II, Moore TI, Wada J, Schumacker PT, Chang BH, Danesh FR. NDUFS4 Regulates Cristae Remodeling in Diabetic Kidney Disease. RESEARCH SQUARE 2023:rs.3.rs-3070079. [PMID: 37461606 PMCID: PMC10350115 DOI: 10.21203/rs.3.rs-3070079/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generated diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model to investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that these conditional mice exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping proteins in linking NDUFS4 with improved cristae morphology. Taken together, we discover the central role of NDUFS4 as a powerful regulator of cristae remodeling, respiratory supercomplexes assembly, and mitochondrial ultrastructure in vitro and in vivo. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.
Collapse
Affiliation(s)
- Koki Mise
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Jianyin Long
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel L. Galvan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zengchun Ye
- Division of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Travis I. Moore
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Benny H. Chang
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad R. Danesh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
11
|
Wei D, Wang L, Liu Y, Hafley MA, Tan L, Lorenzi PL, Yang P, Zuo X, Bresalier RS. Activation of Vitamin D/VDR Signaling Reverses Gemcitabine Resistance of Pancreatic Cancer Cells Through Inhibition of MUC1 Expression. Dig Dis Sci 2023:10.1007/s10620-023-07931-3. [PMID: 37071246 DOI: 10.1007/s10620-023-07931-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to its therapeutic resistance. Inactivation of vitamin D/vitamin D receptor (VDR) signaling may contribute to the malignant phenotype of PDA and altered expression of oncoprotein mucin 1 (MUC1) may be involved in drug resistance of cancer cells. AIM To determine whether vitamin D/VDR signaling regulates the expression and function of MUC1 and its effect on acquired gemcitabine resistance of pancreatic cancer cells. METHODS Molecular analyses and animal models were used to determine the impact of vitamin D/VDR signaling on MUC1 expression and response to gemcitabine treatment. RESULTS RPPA analysis indicated that MUC1 protein expression was significantly reduced in human PDA cells after treatment with vitamin D3 or its analog calcipotriol. VDR regulated MUC1 expression in both gain- and loss-of-function assays. Vitamin D3 or calcipotriol significantly induced VDR and inhibited MUC1 expression in acquired gemcitabine-resistant PDA cells and sensitized the resistant cells to gemcitabine treatment, while siRNA inhibition of MUC1 was associated with paricalcitol-associated sensitization of PDA cells to gemcitabine treatment in vitro. Administration of paricalcitol significantly enhanced the therapeutic efficacy of gemcitabine in xenograft and orthotopic mouse models and increased the intratumoral concentration of dFdCTP, the active metabolite of gemcitabine. CONCLUSION These findings demonstrate a previously unidentified vitamin D/VDR-MUC1 signaling axis involved in the regulation of gemcitabine resistance in PDA and suggests that combinational therapies that include targeted activation of vitamin D/VDR signaling may improve the outcomes of patients with PDA.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Liang Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margarete A Hafley
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Ma Y, Potenza DM, Ajalbert G, Brenna A, Zhu C, Ming XF, Yang Z. Paracrine Effects of Renal Proximal Tubular Epithelial Cells on Podocyte Injury under Hypoxic Conditions Are Mediated by Arginase-II and TGF-β1. Int J Mol Sci 2023; 24:ijms24043587. [PMID: 36835007 PMCID: PMC9966309 DOI: 10.3390/ijms24043587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hypoxia is an important risk for renal disease. The mitochondrial enzyme arginase-II (Arg-II) is expressed and/or induced by hypoxia in proximal tubular epithelial cells (PTECs) and in podocytes, leading to cellular damage. Because PTECs are vulnerable to hypoxia and located in proximity to podocytes, we examined the role of Arg-II in the crosstalk of PTECs under hypoxic conditions with podocytes. A human PTEC cell line (HK2) and a human podocyte cell line (AB8/13) were cultured. Arg-ii gene was ablated by CRISPR/Case9 in both cell types. HK2 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) for 48 h. Conditioned medium (CM) was collected and transferred to the podocytes. Podocyte injuries were then analyzed. Hypoxic (not normoxic) HK2-CM caused cytoskeletal derangement, cell apoptosis, and increased Arg-II levels in differentiated podocytes. These effects were absent when arg-ii in HK2 was ablated. The detrimental effects of the hypoxic HK2-CM were prevented by TGF-β1 type-I receptor blocker SB431542. Indeed, TGF-β1 levels in hypoxic HK2-CM (but not arg-ii-/--HK2-CM) were increased. Furthermore, the detrimental effects of TGF-β1 on podocytes were prevented in arg-ii-/--podocytes. This study demonstrates crosstalk between PTECs and podocytes through the Arg-II-TGF-β1 cascade, which may contribute to hypoxia-induced podocyte damage.
Collapse
|
13
|
Vallorz EL, Janda J, Mansour HM, Schnellmann RG. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int 2022; 102:1073-1089. [PMID: 35779607 DOI: 10.1016/j.kint.2022.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
The β2 adrenergic receptor agonist, formoterol, is an inducer of mitochondrial biogenesis and restorer of mitochondrial and kidney function in acute and chronic models of kidney injury. Unfortunately, systemic administration of formoterol has the potential for adverse cardiovascular effects, increased heart rate, and decreased blood pressure. To minimize these effects, we developed biodegradable and biocompatible polymeric nanoparticles containing formoterol that target the kidney, thereby decreasing the effective dose, and lessen cardiovascular effects while restoring kidney function after injury. Male C57Bl/6 mice, treated with these nanoparticles daily, had reduced ischemia-reperfusion-induced serum creatinine and kidney cortex kidney injury molecule-1 levels by 78% and 73% respectively, compared to control mice six days after injury. With nanoparticle therapy, kidney cortical mitochondrial number and proteins reduced by ischemic injury, recovered to levels of sham-operated mice. Tubular necrosis was reduced 69% with nanoparticles treatment. Nanoparticles improved kidney recovery even when the dosing frequency was reduced from daily to two days per week. Finally, compared to treatment with formoterol-free drug alone, these nanoparticles did not increase heart rate nor decrease blood pressure. Thus, targeted kidney delivery of formoterol-containing nanoparticles is an improvement in standard formoterol therapy for ischemia-reperfusion-induced acute kidney injuries by decreasing the dose, dosing frequency, and cardiac side effects.
Collapse
Affiliation(s)
- Ernest L Vallorz
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Heidi M Mansour
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA; Southern Arizona VA Health Care System, USA.
| |
Collapse
|
14
|
Huang L, Li Y, Wang P, Xie Y, Liu F, Mao J, Miao J. Integrated analysis of immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network in children with Henoch Schönlein purpura nephritis. Transl Pediatr 2022; 11:1682-1696. [PMID: 36345450 PMCID: PMC9636465 DOI: 10.21037/tp-22-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in the regulation of immunological and apoptotic function. This study aimed to explore the critical immune- and apoptosis-related lncRNAs in the occurrence and development of Henoch-Schönlein purpura nephritis (HSPN) in children. METHODS Differential analysis was employed to identify the differentially expressed lncRNAs, as well as the immune- and apoptosis-related mRNAs in children with HSPN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to validate the immunological and apoptotic roles of the differentially expressed immune- and apoptosis-related lncRNAs and mRNAs. Spearman's correlation analysis was performed to analyze the differentially expressed lncRNAs and immune- and apoptosis-related messenger RNAs (mRNAs). Based on the competing endogenous RNA (ceRNA) mechanism, the immune- and apoptosis-related lncRNA-microRNA (miRNA)-mRNA regulatory network was then constructed in children with HSPN. The expression levels of the lncRNAs in the lncRNA-miRNA-mRNA regulatory network were further confirmed by quantitative real-time polymerase chain in the peripheral blood samples of children with HSPN. RESULTS By intersecting the differentially expressed immune-related and apoptosis-related genes through GO and KEGG analyses, a total of 43 genes were identified in children with HSPN, and 100 lncRNAs highly correlated with the above genes were identified by correlation analysis. The immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network was then established based on ceRNA mechanism. Dysregulation of a total of 11 lncRNAs were discovered, including upregulated SNHG3, LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and SCARNA9; and downregulated SNHG1, NEAT1, DISC1-IT1, and PVT1. The validation conducted in the clinical samples also suggested that the above lncRNAs in the specific regulatory network may act as potential biomarkers with prognosis in children with HSPN. CONCLUSIONS LncRNAs may play essential regulatory roles in the occurrence and development of HSPN in children, and the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network might be the underlying molecular mechanism that dissects the disease pathogenesis. In addition, the dysregulated lncRNAs in the regulatory network may be novel biomarkers for the diagnosis and therapy of HSPN in children.
Collapse
Affiliation(s)
- Lingfei Huang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Yanhong Li
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Pu Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Chen Q, Ji H, Lin Y, Chen Z, Liu Y, Jin L, Peng R. LncRNAs regulate ferroptosis to affect diabetes and its complications. Front Physiol 2022; 13:993904. [PMID: 36225311 PMCID: PMC9548856 DOI: 10.3389/fphys.2022.993904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the rapid increase in the incidence of diabetes and its complications poses a serious threat to human health. Ferroptosis, which is a new nonapoptotic form of cell death, has been proven to be closely related to the occurrence and development of diabetes and its complications. In recent years, lncRNAs have been confirmed to be involved in the occurrence and development of diabetes and play an important role in regulating ferroptosis. An increasing number of studies have shown that lncRNAs can affect the occurrence and development of diabetes and its complications by regulating ferroptosis. Therefore, lncRNAs have great potential as therapeutic targets for regulating ferroptosis-mediated diabetes and its complications. This paper reviewed the potential impact and regulatory mechanism of ferroptosis on diabetes and its complications, focusing on the effects of lncRNAs on the occurrence and development of ferroptosis-mediated diabetes and its complications and the regulation of ferroptosis-inducing reactive oxygen species, the key ferroptosis regulator Nrf2 and the NF-κB signaling pathway to provide new therapeutic strategies for the development of lncRNA-regulated ferroptosis-targeted drugs to treat diabetes.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yue Lin
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zheyan Chen
- Department of Plastic Surgery, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| |
Collapse
|
16
|
Liu F, Huang J, Zhang C, Xie Y, Cao Y, Tao L, Tang H, Lin J, Hammes HP, Huang K, Yi F, Su H, Zhang C. Regulation of Podocyte Injury by CircHIPK3/FUS Complex in Diabetic Kidney Disease. Int J Biol Sci 2022; 18:5624-5640. [PMID: 36263181 PMCID: PMC9576511 DOI: 10.7150/ijbs.75994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus and is one of the leading causes of end-stage kidney disease. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that play important roles in various diseases, yet their roles in DKD are poorly understood. CircRNA HIPK3 (circHIPK3), a highly conserved circRNA, is closely related to various cellular functions, including cell proliferation and apoptosis. The association between circHIPK3 and diabetic complications has been well demonstrated in multiple previous studies. However, the role of circHIPK3 in podocyte injury in DKD remains unclear. Herein, we discovered that circHIPK3 expression is markedly elevated in cultured podocytes under high-glucose (HG) conditions and glomeruli of diabetic mice, which is closely associated with podocyte injury in DKD. Functionally, lentivirus-mediated knockdown of circHIPK3 dramatically suppresses HG-induced podocyte apoptosis in vitro. Therapeutically, silencing circHIPK3 by adeno-associated virus-mediated RNA interference ameliorates podocyte injury and albuminuria in STZ-induced diabetic mice. Mechanistically, circHIPK3 facilitates the enrichment of fused in sarcoma (FUS) on the ectodysplasin A2 receptor (EDA2R) promoter, resulting in the upregulation of EDA2R expression and activation of apoptotic signaling. Taken together, these results indicate circHIPK3/FUS/EDA2R axis as a therapeutic target for podocyte injury and DKD progression.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunyun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Tao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of science and Technology, Wuhan 430030, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,✉ Corresponding authors: Chun Zhang (E-mail: ). Address: Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Tel: 86-027-85726006, Fax: 86-027-83617730. Hua Su (E-mail: ). Address: Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Tel: 86-027-85726006, Fax: 86-027-83617730
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,✉ Corresponding authors: Chun Zhang (E-mail: ). Address: Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Tel: 86-027-85726006, Fax: 86-027-83617730. Hua Su (E-mail: ). Address: Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Tel: 86-027-85726006, Fax: 86-027-83617730
| |
Collapse
|
17
|
Ren Z, Potenza DM, Ma Y, Ajalbert G, Hoogewijs D, Ming XF, Yang Z. Role of Arginase-II in Podocyte Injury under Hypoxic Conditions. Biomolecules 2022; 12:biom12091213. [PMID: 36139052 PMCID: PMC9496188 DOI: 10.3390/biom12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia plays a crucial role in acute and chronic renal injury, which is attributable to renal tubular and glomerular cell damage. Some studies provide evidence that hypoxia-dependent upregulation of the mitochondrial enzyme arginase type-II (Arg-II) in tubular cells promotes renal tubular injury. It is, however, not known whether Arg-II is also expressed in glomerular cells, particularly podocytes under hypoxic conditions, contributing to hypoxia-induced podocyte injury. The effects of hypoxia on human podocyte cells (AB8/13) in cultures and on isolated kidneys from wild-type (wt) and arg-ii gene-deficient (arg-ii−/−) mice ex vivo, as well as on mice of the two genotypes in vivo, were investigated, respectively. We found that the Arg-II levels were enhanced in cultured podocytes in a time-dependent manner over 48 h, which was dependent on the stabilization of hypoxia-inducible factor 1α (HIF1α). Moreover, a hypoxia-induced derangement of cellular actin cytoskeletal fibers, a decrease in podocin, and an increase in mitochondrial ROS (mtROS) generation—as measured by MitoSOX—were inhibited by adenoviral-mediated arg-ii gene silencing. These effects of hypoxia on podocyte injury were mimicked by the HIFα stabilizing drug DMOG, which inhibits prolyl hydroxylases (PHD), the enzymes involved in HIFα degradation. The silencing of arg-ii prevented the detrimental effects of DMOG on podocytes. Furthermore, the inhibition of mtROS generation by rotenone—the inhibitor of respiration chain complex-I—recapitulated the protective effects of arg-ii silencing on podocytes under hypoxic conditions. Moreover, the ex vivo experiments with isolated kidney tissues and the in vivo experiments with mice exposed to hypoxic conditions showed increased Arg-II levels in podocytes and decreased podocyte markers regarding synaptopodin in wt mice but not in arg-ii−/− mice. While age-associated albuminuria was reduced in the arg-ii−/− mice, the hypoxia-induced increase in albuminuria was, however, not significantly affected in the arg-ii−/−. Our study demonstrates that Arg-II in podocytes promotes cell injury. Arg-ii ablation seems insufficient to protect mice in vivo against a hypoxia-induced increase in albuminuria, but it does reduce albuminuria in aging.
Collapse
Affiliation(s)
- Zhilong Ren
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Duilio Michele Potenza
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yiqiong Ma
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guillaume Ajalbert
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - David Hoogewijs
- Integrative Oxygen Physiology, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| | - Zhihong Yang
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| |
Collapse
|
18
|
Bai Z, Xie T, Liu T, Chen Z, Yu L, Zhang C, Luo J, Chen L, Zhao X, Xiao Y. An integrated RNA sequencing and network pharmacology approach reveals the molecular mechanism of dapagliflozin in the treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:967822. [PMID: 36213291 PMCID: PMC9533015 DOI: 10.3389/fendo.2022.967822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dapagliflozin, an inhibitor of sodium-glucose cotransporter 2 (SGLT2), is a new type of oral hypoglycemic drugs which can promote glucose excretion in the kidney. Studies have shown that dapagliflozin has renoprotective effect in the treatment of type 2 diabetes. However, the underlying mechanism remains unclear. Here, we combined integrated RNA sequencing and network pharmacology approach to investigate the molecular mechanism of dapagliflozin for diabetic nephropathy (DN). Dapagliflozin significantly relieved glucose intolerance, urinary albumin/creatinine ratio (UACR) and renal pathological injuries of db/db mice. The LncRNA and mRNA expression in kidney tissues from control group (CR), db/db group (DN) and dapagliflozin group (DG) were assessed by RNA sequencing. We identified 7 LncRNAs and 64 mRNAs common differentially expressed in CR vs DN and DN vs DG, which were used to construct co-expression network to reveal significantly correlated expression patterns in DN. In addition, network pharmacology was used to predict the therapeutic targets of dapagliflozin and we constructed component-target-pathway network according to the results of RNA sequencing and network pharmacology. We found that SMAD9, PPARG, CD36, CYP4A12A, CYP4A12B, CASP3, H2-DMB2, MAPK1, MAPK3, C3 and IL-10 might be the pivotal targets of dapagliflozin for treating DN and these genes were mainly enriched in pathways including TGF-β signaling pathway, PPAR signaling pathway, Chemokine signaling pathway, etc. Our results have important implication and provide novel insights into the protective mechanism of dapagliflozin for treating DN.
Collapse
Affiliation(s)
- Zhenyu Bai
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zedong Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Linde Yu
- GuangDong Province Engineering Technology Research Institute of Traditional Chinese Medicine (TCM), Guangzhou, China
- Emergency Department, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Chao Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jincheng Luo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liguo Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Liguo Chen, ; Xiaoshan Zhao, ; Ya Xiao,
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Liguo Chen, ; Xiaoshan Zhao, ; Ya Xiao,
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Liguo Chen, ; Xiaoshan Zhao, ; Ya Xiao,
| |
Collapse
|