1
|
Luo Y, Sun L, Peng Y. The structural basis of the G protein-coupled receptor and ion channel axis. Curr Res Struct Biol 2025; 9:100165. [PMID: 40083915 PMCID: PMC11904507 DOI: 10.1016/j.crstbi.2025.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Sensory neurons play an essential role in recognizing and responding to detrimental, irritating, and inflammatory stimuli from our surroundings, such as pain, itch, cough, and neurogenic inflammation. The transduction of these physiological signals is chiefly mediated by G protein-coupled receptors (GPCRs) and ion channels. The binding of ligands to GPCRs triggers a signaling cascade, recruiting G proteins or β-arrestins, which subsequently interact with ion channels (e.g., GIRK and TRP channels). This interaction leads to the sensitization and activation of these channels, initiating the neuron's protective mechanisms. This review delves into the complex interplay between GPCRs and ion channels that underpin these physiological processes, with a particular focus on the role of structural biology in enhancing our comprehension. Through unraveling the intricacies of the GPCR-ion channel axis, we aim to shed light on the sophisticated intermolecular dynamics within these pivotal membrane protein families, ultimately guiding the development of precise therapeutic interventions.
Collapse
Affiliation(s)
- Yulin Luo
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, L Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yao Peng
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| |
Collapse
|
2
|
Shalomov B, Friesacher T, Yakubovich D, Combista JC, Reddy HP, Dabbah S, Bernsteiner H, Zangerl-Plessl EM, Stary-Weinzinger A, Dascal N. Ethosuximide: Subunit- and Gβγ-dependent blocker and reporter of allosteric changes in GIRK channels. Br J Pharmacol 2025; 182:1704-1718. [PMID: 39814556 DOI: 10.1111/bph.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND AND PURPOSE The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ1 protein, likely through the inhibition of G-protein gated K+ (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs. EXPERIMENTAL APPROACH We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ. ETX binding site and mode of action were analysed using molecular dynamic (MD) simulations and kinetic modelling, and the predictions were tested by mutagenesis and functional testing. KEY RESULTS We show that ETX is a subunit-selective, allosteric blocker of GIRKs. The potency of ETX block is increased by Gβγ, in parallel with channel activation. MD simulations and mutagenesis locate the ETX binding site in GIRK2 to a region associated with phosphatidylinositol-4,5-bisphosphate (PIP2) regulation, and suggest that ETX acts by closing the helix bundle crossing (HBC) gate and altering channel's interaction with PIP2. The apparent affinity of ETX block is highly sensitive to changes in channel gating caused by mutations in Gβ1 or GIRK subunits. CONCLUSION AND IMPLICATIONS ETX block of GIRKs is allosteric, subunit-specific, and enhanced by Gβγ through an intricate network of allosteric interactions within the channel molecule. Our findings pose GIRK as a potential therapeutic target for ETX and ETX as a potent allosteric GIRK blocker and a tool for probing gating-related conformational changes in GIRK.
Collapse
Affiliation(s)
- Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - J Carlo Combista
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shoham Dabbah
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Harald Bernsteiner
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Jahn H, Shyng SL, Schultz C. Lipid probes to study ion channels. Curr Opin Chem Biol 2025; 85:102581. [PMID: 39978055 DOI: 10.1016/j.cbpa.2025.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Lipids can have specific interaction partners and act as small molecule regulators of proteins, especially for transmembrane proteins. Transmembrane proteins, such as ion channels, can be influenced by lipids in four ways; lipids can be direct ligands, localize effector proteins or domains, affect protein-protein interaction, or change the biophysical properties of the surrounding membrane. In this article, we will give examples of how lipids directly interact with ion channels and address the complex aspect of indirect regulation via lipids of the surrounding membrane bilayer. In addition, we discuss current and propose future molecular tools and experiments elucidating the many roles lipids play in ion channel function.
Collapse
Affiliation(s)
- Helene Jahn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA; Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Carsten Schultz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
5
|
Cui M, Lu Y, Ma X, Logothetis DE. Molecular mechanism of GIRK2 channel gating modulated by cholesteryl hemisuccinate. Front Physiol 2024; 15:1486362. [PMID: 39493862 PMCID: PMC11527606 DOI: 10.3389/fphys.2024.1486362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Cholesterol, an essential lipid of cell membranes, regulates G protein-gated inwardly rectifying potassium (GIRK) channel activity. Previous studies have shown that cholesterol activates GIRK2 homotetrameric channels, which are expressed in dopaminergic neurons of the brain. Deletion of GIRK2 channels affects both GIRK2 homo- and heterotetrames and can lead to abnormal neuronal excitability, including conditions such as epilepsy and addiction. A 3.5 Å cryo-EM structure of GIRK2 in complex with CHS (cholesteryl hemisuccinate) and PIP2 (phosphatidylinositol 4,5-bisphosphate) has been solved. This structure provides the opportunity to study GIRK2 channel gating dynamics regulated by cholesterol using gating molecular dynamics (GMD) simulations. In the present study, we conducted microsecond-long GMD simulations on the GIRK2 channel in its APO, PIP2, and PIP2/CHS bound states, followed by systematic analysis to gain molecular insights into how CHS modulates GIRK2 channel gating. We found that CHS binding facilitates GIRK2 channel opening, with 43 K+ ion permeation events observed, compared to 0 and 2 K+ ion permeation events for GIRK2-APO and GIRK2/PIP2, respectively. Binding of CHS to the GIRK2 channel enhances PIP2 and channel interactions, which is consistent with previous experimental results. The negatively charged PIP2 alters the internal electrostatic potential field in the channel and lowers the negative free energy barrier for K+ ion permeation.
Collapse
Affiliation(s)
- Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
- Center for Drug Discovery, Northeastern University, Boston, MA, United States
| | - Yongcheng Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Xinyi Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Diomedes E. Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
- Center for Drug Discovery, Northeastern University, Boston, MA, United States
- Affiliate of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
- Affiliate of Bioengineering, Northeastern University, Boston, MA, United States
- Affiliate of Roux Institute of Northeastern University, Portland, ME, United States
| |
Collapse
|
6
|
Del Rey NLG, Hernández-Pinedo N, Carrillo M, Del Cerro M, Esteban-García N, Trigo-Damas I, Monje MHG, Lanciego JL, Cavada C, Obeso JA, Blesa J. Calbindin and Girk2/Aldh1a1 define resilient vs vulnerable dopaminergic neurons in a primate Parkinson's disease model. NPJ Parkinsons Dis 2024; 10:165. [PMID: 39223183 PMCID: PMC11369234 DOI: 10.1038/s41531-024-00777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The differential vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc) is a critical and unresolved question in Parkinson´s disease. Studies in mice show diverse susceptibility of subpopulations of nigral dopaminergic neurons to various toxic agents. In the primate midbrain, the molecular phenotypes of dopaminergic neurons and their differential vulnerability are poorly characterized. We performed a detailed histological study to determine the anatomical distribution of different molecular phenotypes within identified midbrain neurons and their selective vulnerability in control and MPTP-treated monkeys. In the ventral tier of the SNc (nigrosome), neurons rich in Aldh1a1 and Girk2 are intermingled, whereas calbindin is the marker that best identifies the most resilient neurons located in the dorsal tier and ventral tegmental area, recapitulating the well-defined dorsoventral axis of susceptibility to degeneration of dopaminergic neurons. In particular, a loss of Aldh1a1+ neurons in the ventral SNc was observed in parallel to the progressive development of parkinsonism. Aldh1a1+ neurons were the main population of vulnerable dopaminergic nigrostriatal-projecting neurons, while Aldh1a1- neurons giving rise to nigropallidal projections remained relatively preserved. Moreover, bundles of entwined Aldh1a1+ dendrites with long trajectories extending towards the substantia nigra pars reticulata emerged from clusters of Aldh1a1+ neurons and colocalized with dense cannabinoid receptor 1 afferent fibers likely representing part of the striatonigral projection that is affected in human disorders, including Parkinson´s disease. In conclusion, vulnerable nigrostriatal-projecting neurons can be identified by using Aldh1a1 and Girk2. Further studies are needed to define the afferent/efferent projection patterns of these most vulnerable neurons.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nagore Hernández-Pinedo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Megan Carrillo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - María Del Cerro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - Mariana H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - José L Lanciego
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Cavada
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autónoma de Madrid University, Madrid, Spain
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain.
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain.
| |
Collapse
|
7
|
Chiu PL, Orjuela JD, de Groot BL, Aponte Santamaría C, Walz T. Structure and dynamics of cholesterol-mediated aquaporin-0 arrays and implications for lipid rafts. eLife 2024; 12:RP90851. [PMID: 39222068 PMCID: PMC11368405 DOI: 10.7554/elife.90851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein-protein contacts but also due to increased lipid-protein complementarity. Since each tetramer interacts with four such 'glue' cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Juan D Orjuela
- Max Planck Tandem Group in Computational Biophysics, Universidad de los AndesBogotáColombia
- Biomedical Engineering Department, Universidad de los AndesBogotáColombia
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Camilo Aponte Santamaría
- Max Planck Tandem Group in Computational Biophysics, Universidad de los AndesBogotáColombia
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical StudiesHeidelbergGermany
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Zhekova HR, Ramirez Echemendía DP, Sejdiu BI, Pushkin A, Tieleman DP, Kurtz I. Molecular dynamics simulations of lipid-protein interactions in SLC4 proteins. Biophys J 2024; 123:1705-1721. [PMID: 38760929 PMCID: PMC11214021 DOI: 10.1016/j.bpj.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO3-, CO32-, Cl-, Na+, K+, NH3, and H+, which are necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl-/HCO3- exchanger) and NBCe1 (Na+-CO32-cotransporter). Previous computational studies of the outward-facing state of AE1 with model lipid membranes revealed enhanced protein-lipid interactions between cholesterol (CHOL) and phosphatidylinositol bisphosphate (PIP2). However, the protein-lipid interactions in other members of the family and other conformation states are still poorly understood and this precludes the detailed studies of a potential regulatory role for lipids in the SLC4 family. In this work, we performed coarse-grained and atomistic molecular dynamics simulations on three members of the SLC4 family with different transport modes: AE1, NBCe1, and NDCBE (an Na+-CO32-/Cl- exchanger), in model HEK293 membranes consisting of CHOL, PIP2, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. The recently resolved inward-facing state of AE1 was also included in the simulations. Lipid-protein contact analysis of the simulated trajectories was performed with the ProLint server, which provides a multitude of visualization tools for illustration of areas of enhanced lipid-protein contact and identification of putative lipid binding sites within the protein matrix. We observed enrichment of CHOL and PIP2 around all proteins with subtle differences in their distribution depending on the protein type and conformation state. Putative binding sites were identified for CHOL, PIP2, phosphatidylcholine, and sphingomyelin in the three studied proteins, and their potential roles in the SLC4 transport function, conformational transition, and protein dimerization are discussed.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel P Ramirez Echemendía
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Besian I Sejdiu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander Pushkin
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
9
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Beverley KM, Barbera N, Levitan I. Dual pattern of cholesterol-induced decoupling of residue-residue interactions of Kir2.2. J Struct Biol 2024; 216:108091. [PMID: 38641256 DOI: 10.1016/j.jsb.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cholesterol is a negative regulator of a variety of ion channels. We have previously shown that cholesterol suppresses Kir2.2 channels via residue-residue uncoupling on the inter-subunit interfaces within the close state of the channels (3JYC). In this study, we extend this analysis to the other known structure of Kir2.2 that is closer to the open state of Kir2.2 channels (3SPI) and provide additional analysis of the residue distances between the uncoupled residues and cholesterol binding domains in the two conformation states of the channels. We found that the general phenomenon of cholesterol binding leading to uncoupling between specific residues is conserved in both channel states but the specific pattern of the uncoupling residues is distinct between the two states and implies different mechanisms. Specifically, we found that cholesterol binding in the 3SPI state results in an uncoupling of residues in three distinct regions; the transmembrane domain, membrane-cytosolic interface, and the cytosolic domain, with the first two regions forming an envelope around PI(4,5)P2 and cholesterol binding sites and the distal region overlapping with the subunit-subunit interface characterized in our previous study of the disengaged state. We also found that this uncoupling is dependent upon the number of cholesterol molecules bound to the channel. We further generated a mutant channel Kir2.2P187V with a single point mutation in a residue proximal to the PI(4,5)P2 binding site, which is predicted to be uncoupled from other residues in its vicinity upon cholesterol binding and found that this mutation abrogates the sensitivity of Kir2.2 to cholesterol changes in the membrane. These findings suggest that cholesterol binding to this conformation state of Kir2.2 channels may destabilize the PI(4,5)P2 interactions with the channels while in the disengaged state the destabilization occurs where the subunits interact. These findings give insight into the structural mechanistic basis for the functional effects of cholesterol binding to the Kir2.2 channel.
Collapse
Affiliation(s)
- Katie M Beverley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Nicolas Barbera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Public Health Genomics, Department of Biomedical Engineering, School of Engineering &Applied Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Irena Levitan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Chiu PL, Orjuela JD, de Groot BL, Aponte-Santamaría C, Walz T. Structure and dynamics of cholesterol-mediated aquaporin-0 arrays and implications for lipid rafts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.540959. [PMID: 37292626 PMCID: PMC10245776 DOI: 10.1101/2023.05.16.540959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein-protein contacts but also due to increased lipid-protein complementarity. Since each tetramer interacts with four such 'glue' cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.
Collapse
|
12
|
Zhao Y, Zhang X, Liu L, Hu F, Chang F, Han Z, Li C. Insights into Activation Dynamics and Functional Sites of Inwardly Rectifying Potassium Channel Kir3.2 by an Elastic Network Model Combined with Perturbation Methods. J Phys Chem B 2024; 128:1360-1370. [PMID: 38308647 DOI: 10.1021/acs.jpcb.3c06739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
The inwardly rectifying potassium channel Kir3.2, a member of the inward rectifier potassium (Kir) channel family, exerts important biological functions through transporting potassium ions outside of the cell, during which a large-scale synergistic movement occurs among its different domains. Currently, it is not fully understood how the binding of the ligand to the Kir3.2 channel leads to the structural changes and which key residues are responsible for the channel gating and allosteric dynamics. Here, we construct the Gaussian network model (GNM) of the Kir3.2 channel with the secondary structure and covalent interaction information considered (sscGNM), which shows a better performance in reproducing the channel's flexibility compared with the traditional GNM. In addition, the sscANM-based perturbation method is used to simulate the channel's conformational transition caused by the activator PIP2's binding. By applying certain forces to the PIP2 binding pocket, the coarse-grained calculations generate the similar conformational changes to the experimental observation, suggesting that the topology structure as well as PIP2 binding are crucial to the allosteric activation of the Kir3.2 channel. We also utilize the sscGNM-based thermodynamic cycle method developed by us to identify the key residues whose mutations significantly alter the channel's binding free energy with PIP2. We identify not only the residues important for the specific binding but also the ones critical for the allosteric transition coupled with PIP2 binding. This study is helpful for understanding the working mechanism of Kir3.2 channels and can provide important information for related drug design.
Collapse
Affiliation(s)
- Yingchun Zhao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xinyu Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lamei Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fangrui Hu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fubin Chang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Chen IS, Yasuda J, Notomi T, Nakamura TY. Licorice metabolite 18β-glycyrrhetinic acid activates G protein-gated inwardly rectifying K + channels. Br J Pharmacol 2024; 181:447-463. [PMID: 37642133 DOI: 10.1111/bph.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Licorice (liquorice) is a common food additive and is used in Chinese medicine. Excess licorice intake can induce atrial fibrillation. Patients with atrial fibrillation possess constitutively activated G protein-gated inwardly rectifying K+ (GIRK) channels. Whether licorice affects GIRK channel activity is unknown. We aimed to clarify the effects of licorice ingredients on GIRK current and the mechanism of action. EXPERIMENTAL APPROACH A major component of licorice, glycyrrhizic acid (GA), and its metabolite, 18β-glycyrrhetinic acid (18β-GA), were tested. We performed electrophysiological recordings in Xenopus oocytes to examine the effects of GA and 18β-GA on various GIRK subunits (Kir 3.1-Kir 3.4), mutagenesis analyses to identify the crucial residues for drug action and motion analysis in cultured rat atrial myocytes to clarify effects of 18β-GA on atrial functions. KEY RESULTS GA inhibited Kir 3.1-containing channels, while 18β-GA activated all Kir 3.x subunits. A pore helix residue Phe137 in Kir 3.1 was critical for GA-mediated inhibition, and the corresponding Ser148 in Kir 3.2 was critical for 18β-GA-mediated activation. 18β-GA activated GIRK channel in a Gβγ -independent manner, whereas phosphatidylinositol 4,5-bisphosphate (PIP2 ) was essential for activation. Glu236 located at the cytoplasmic pore of Kir 3.2 appeared to be important to interactions with 18β-GA. In rat atrial myocytes, 18β-GA suppressed spontaneous beating via activation of GIRK channels. CONCLUSION AND IMPLICATIONS GA acts as a novel GIRK inhibitor, and 18β-GA acts as a novel GIRK activator. 18β-GA alters atrial function via activation of GIRK channels. This study elucidates the pharmacological activity of licorice ingredients and provides information for drug design.
Collapse
Affiliation(s)
- I-Shan Chen
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jumpei Yasuda
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takuya Notomi
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomoe Y Nakamura
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
14
|
Zadka Ł, Sochocka M, Hachiya N, Chojdak-Łukasiewicz J, Dzięgiel P, Piasecki E, Leszek J. Endocytosis and Alzheimer's disease. GeroScience 2024; 46:71-85. [PMID: 37646904 PMCID: PMC10828383 DOI: 10.1007/s11357-023-00923-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Endocytosis plays an important role in a number of cellular processes including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. Based on the results of genetic and biochemical studies, there is a link between neuronal endosomal function and AD pathology. Taking this into account, we can state that in the results of previous research, endolysosomal abnormality is an important cause of neuronal lesions in the brain. Endocytosis is a central pathway involved in the regulation of the degradation of amyloidogenic components. The results of the studies suggest that a correlation between alteration in the endocytosis process and associated protein expression progresses AD. In this article, we discuss the current knowledge about endosomal abnormalities in AD.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| | - Naomi Hachiya
- Shonan Research Center, Central Glass Co., Ltd, Shonan Health Innovation Park 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Egbert Piasecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland
| |
Collapse
|
15
|
Arreola J, López-Romero AE, Pérez-Cornejo P, Rodríguez-Menchaca AA. Phosphatidylinositol 4,5-Bisphosphate and Cholesterol Regulators of the Calcium-Activated Chloride Channels TMEM16A and TMEM16B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:279-304. [PMID: 36988885 DOI: 10.1007/978-3-031-21547-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | | | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
16
|
Bukiya AN, Rosenhouse-Dantsker A. From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P 2 on Inwardly Rectifying Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:169-191. [PMID: 36988881 DOI: 10.1007/978-3-031-21547-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Inwardly rectifying potassium (Kir) channels are integral membrane proteins that control the flux of potassium ions across cell membranes and regulate membrane permeability. All eukaryotic Kir channels require the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for activation. In recent years, it has become evident that the function of many members of this family of channels is also mediated by another essential lipid-cholesterol. Here, we focus on members of the Kir2 and Kir3 subfamilies and their modulation by these two key lipids. We discuss how PI(4,5)P2 and cholesterol bind to Kir2 and Kir3 channels and how they affect channel activity. We also discuss the accumulating evidence indicating that there is interplay between PI(4,5)P2 and cholesterol in the modulation of Kir2 and Kir3 channels. In particular, we review the crosstalk between PI(4,5)P2 and cholesterol in the modulation of the ubiquitously expressed Kir2.1 channel and the synergy between these two lipids in the modulation of the Kir3.4 channel, which is primarily expressed in the heart. Additionally, we demonstrate that there is also synergy in the modulation of Kir3.2 channels, which are expressed in the brain. These observations suggest that alterations in the relative levels PI(4,5)P2 and cholesterol may fine-tune Kir channel activity.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
17
|
Campos-Ríos A, Rueda-Ruzafa L, Lamas JA. The Relevance of GIRK Channels in Heart Function. MEMBRANES 2022; 12:1119. [PMID: 36363674 PMCID: PMC9698958 DOI: 10.3390/membranes12111119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Among the large number of potassium-channel families implicated in the control of neuronal excitability, G-protein-gated inwardly rectifying potassium channels (GIRK/Kir3) have been found to be a main factor in heart control. These channels are activated following the modulation of G-protein-coupled receptors and, although they have been implicated in different neurological diseases in both human and animal studies of the central nervous system, the therapeutic potential of different subtypes of these channel families in cardiac conditions has remained untapped. As they have emerged as a promising potential tool to treat a variety of conditions that disrupt neuronal homeostasis, many studies have started to focus on these channels as mediators of cardiac dynamics, thus leading to research into their implication in cardiovascular conditions. Our aim is to review the latest advances in GIRK modulation in the heart and their role in the cardiovascular system.
Collapse
Affiliation(s)
- Ana Campos-Ríos
- CINBIO, Laboratory of Neuroscience, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Lola Rueda-Ruzafa
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, 04120 Almeria, Spain
| | - José Antonio Lamas
- CINBIO, Laboratory of Neuroscience, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| |
Collapse
|
18
|
Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 2022; 29:1197-1212.e8. [PMID: 35931030 PMCID: PMC9623845 DOI: 10.1016/j.stem.2022.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/31/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023]
Abstract
Apolipoprotein E4 (APOE4) is the greatest known genetic risk factor for developing sporadic Alzheimer's disease. How the interaction of APOE4 microglia with neurons differs from microglia expressing the disease-neutral APOE3 allele remains unknown. Here, we employ CRISPR-edited induced pluripotent stem cells (iPSCs) to dissect the impact of APOE4 in neuron-microglia communication. Our results reveal that APOE4 induces a lipid-accumulated state that renders microglia weakly responsive to neuronal activity. By examining the transcriptional signatures of APOE3 versus APOE4 microglia in response to neuronal conditioned media, we established that neuronal cues differentially induce a lipogenic program in APOE4 microglia that exacerbates pro-inflammatory signals. Through decreased uptake of extracellular fatty acids and lipoproteins, we identified that APOE4 microglia disrupts the coordinated activity of neuronal ensembles. These findings suggest that abnormal neuronal network-level disturbances observed in Alzheimer's disease patients harboring APOE4 may in part be triggered by impairment in lipid homeostasis in non-neuronal cells.
Collapse
|
19
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Barbera N, Granados ST, Vanoye CG, Abramova TV, Kulbak D, Ahn SJ, George AL, Akpa BS, Levitan I. Cholesterol-induced suppression of Kir2 channels is mediated by decoupling at the inter-subunit interfaces. iScience 2022; 25:104329. [PMID: 35602957 PMCID: PMC9120057 DOI: 10.1016/j.isci.2022.104329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Cholesterol is a major regulator of multiple types of ion channels. Although there is increasing information about cholesterol binding sites, the molecular mechanisms through which cholesterol binding alters channel function are virtually unknown. In this study, we used a combination of Martini coarse-grained simulations, a network theory-based analysis, and electrophysiology to determine the effect of cholesterol on the dynamic structure of the Kir2.2 channel. We found that increasing membrane cholesterol reduced the likelihood of contact between specific regions of the cytoplasmic and transmembrane domains of the channel, most prominently at the subunit-subunit interfaces of the cytosolic domains. This decrease in contact was mediated by pairwise interactions of specific residues and correlated to the stoichiometry of cholesterol binding events. The predictions of the model were tested by site-directed mutagenesis of two identified residues-V265 and H222-and high throughput electrophysiology.
Collapse
Affiliation(s)
- Nicolas Barbera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sara T. Granados
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Carlos Guillermo Vanoye
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V. Abramova
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle Kulbak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sang Joon Ahn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Alfred L. George
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Belinda S. Akpa
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Irena Levitan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Friesacher T, Reddy HP, Bernsteiner H, Carlo Combista J, Shalomov B, Bera AK, Zangerl-Plessl EM, Dascal N, Stary-Weinzinger A. A selectivity filter mutation provides insights into gating regulation of a K + channel. Commun Biol 2022; 5:345. [PMID: 35411015 PMCID: PMC9001731 DOI: 10.1038/s42003-022-03303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
G-protein coupled inwardly rectifying potassium (GIRK) channels are key players in inhibitory neurotransmission in heart and brain. We conducted molecular dynamics simulations to investigate the effect of a selectivity filter (SF) mutation, G154S, on GIRK2 structure and function. We observe mutation-induced loss of selectivity, changes in ion occupancy and altered filter geometry. Unexpectedly, we reveal aberrant SF dynamics in the mutant to be correlated with motions in the binding site of the channel activator Gβγ. This coupling is corroborated by electrophysiological experiments, revealing that GIRK2wt activation by Gβγ reduces the affinity of Ba2+ block. We further present a functional characterization of the human GIRK2G154S mutant validating our computational findings. This study identifies an allosteric connection between the SF and a crucial activator binding site. This allosteric gating mechanism may also apply to other potassium channels that are modulated by accessory proteins. Gly selectivity filter (TIGYGYR) mutant of the GIRK2 channel causes rare but severe neurological disorder called the Keppen-Lubinsky syndrome. Here, the authors explore the molecular mechanism of action of this glycine to serine mutant causing disease and identify an allosteric connection between the selectivity filter and a crucial activator binding site.
Collapse
Affiliation(s)
- Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Harald Bernsteiner
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - J Carlo Combista
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
22
|
Hager NA, McAtee CK, Lesko MA, O’Donnell AF. Inwardly Rectifying Potassium Channel Kir2.1 and its "Kir-ious" Regulation by Protein Trafficking and Roles in Development and Disease. Front Cell Dev Biol 2022; 9:796136. [PMID: 35223865 PMCID: PMC8864065 DOI: 10.3389/fcell.2021.796136] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Potassium (K+) homeostasis is tightly regulated for optimal cell and organismal health. Failure to control potassium balance results in disease, including cardiac arrythmias and developmental disorders. A family of inwardly rectifying potassium (Kir) channels helps cells maintain K+ levels. Encoded by KCNJ genes, Kir channels are comprised of a tetramer of Kir subunits, each of which contains two-transmembrane domains. The assembled Kir channel generates an ion selectivity filter for K+ at the monomer interface, which allows for K+ transit. Kir channels are found in many cell types and influence K+ homeostasis across the organism, impacting muscle, nerve and immune function. Kir2.1 is one of the best studied family members with well-defined roles in regulating heart rhythm, muscle contraction and bone development. Due to their expansive roles, it is not surprising that Kir mutations lead to disease, including cardiomyopathies, and neurological and metabolic disorders. Kir malfunction is linked to developmental defects, including underdeveloped skeletal systems and cerebellar abnormalities. Mutations in Kir2.1 cause the periodic paralysis, cardiac arrythmia, and developmental deficits associated with Andersen-Tawil Syndrome. Here we review the roles of Kir family member Kir2.1 in maintaining K+ balance with a specific focus on our understanding of Kir2.1 channel trafficking and emerging roles in development and disease. We provide a synopsis of the vital work focused on understanding the trafficking of Kir2.1 and its role in development.
Collapse
Affiliation(s)
| | | | | | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Qiao P, Schrecke S, Walker T, McCabe JW, Lyu J, Zhu Y, Zhang T, Kumar S, Clemmer D, Russell DH, Laganowsky A. Entropy in the Molecular Recognition of Membrane Protein-Lipid Interactions. J Phys Chem Lett 2021; 12:12218-12224. [PMID: 34928154 PMCID: PMC8905501 DOI: 10.1021/acs.jpclett.1c03750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the molecular driving forces that underlie membrane protein-lipid interactions requires the characterization of their binding thermodynamics. Here, we employ variable-temperature native mass spectrometry to determine the thermodynamics of lipid binding events to the human G-protein-gated inward rectifier potassium channel, Kir3.2. The channel displays distinct thermodynamic strategies to engage phosphatidylinositol (PI) and phosphorylated forms thereof. The addition of a 4'-phosphate to PI results in an increase in favorable entropy. PI with two or more phosphates exhibits more complex binding, where lipids appear to bind two nonidentical sites on Kir3.2. Remarkably, the interaction of 4,5-bisphosphate PI with Kir3.2 is solely driven by a large, favorable change in entropy. Installment of a 3'-phosphate to PI(4,5)P2 results in an altered thermodynamic strategy. The acyl chain of the lipid has a marked impact on binding thermodynamics and, in some cases, enthalpy becomes favorable.
Collapse
Affiliation(s)
- Pei Qiao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
24
|
Structural insights into GIRK2 channel modulation by cholesterol and PIP 2. Cell Rep 2021; 36:109619. [PMID: 34433062 PMCID: PMC8436891 DOI: 10.1016/j.celrep.2021.109619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are important for determining neuronal excitability. In addition to G proteins, GIRK channels are potentiated by membrane cholesterol, which is elevated in the brains of people with neurodegenerative diseases such as Alzheimer’s dementia and Parkinson’s disease. The structural mechanism of cholesterol modulation of GIRK channels is not well understood. In this study, we present cryo-electron microscopy (cryoEM) structures of GIRK2 in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) and phosphatidylinositol 4,5-bisphosphate (PIP2). The structures reveal that CHS binds near PIP2 in lipid-facing hydrophobic pockets of the transmembrane domain. Our structural analysis suggests that CHS stabilizes PIP2 interaction with the channel and promotes engagement of the cytoplasmic domain onto the transmembrane region. Mutagenesis of one of the CHS binding pockets eliminates cholesterol-dependent potentiation of GIRK2. Elucidating the structural mechanisms underlying cholesterol modulation of GIRK2 channels could facilitate the development of therapeutics for treating neurological diseases. Ion channels are important in determining neuronal excitability. Elevated cholesterol levels found in some neurodegenerative diseases can affect the function of ion channels. Mathiharan et al. take a structural and functional approach to identifying physical sites for cholesterol, and they provide details on how cholesterol potentiates ion channel activity.
Collapse
|