1
|
Menon NA, Kumar CD, Ramachandran P, Blaize B, Gautam M, Cordani M, Lekha Dinesh Kumar. Small-molecule inhibitors of WNT signalling in cancer therapy and their links to autophagy and apoptosis. Eur J Pharmacol 2025; 986:177137. [PMID: 39551337 DOI: 10.1016/j.ejphar.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cancer represents an intricate and heterogeneous ailment that evolves from a multitude of epigenetic and genetic variations that disrupt normal cellular function. The WNT/β-catenin pathway is essential in maintaining the balance between cell renewal and differentiation in various tissues. Abnormal activation of this pathway can lead to uncontrolled cell growth and initiate cancer across a variety of tissues such as the colon, skin, liver, and ovary. It enhances characteristics that lead to cancer progression, including angiogenesis, invasion and metastasis. Processes like autophagy and apoptosis which regulate cell death and play a crucial role in maintaining cellular equilibrium are also intimately linked with WNT/ β-catenin pathway. Thus, targeting WNT pathway has become a key strategy in developing antitumor therapies. Employing small molecule inhibitors has emerged as a targeted therapy to improve the clinical outcome compared to conventional cancer treatments. Many strategies using small molecule inhibitors for modulating the WNT/β-catenin pathway, such as hindering WNT ligands' secretion or interaction, disrupting receptor complex, and blocking the nuclear translocation of β-catenin have been investigated. These interventions have shown promise in both preclinical and clinical settings. This review provides a comprehensive understanding of the role of WNT/β-catenin signalling pathway's role in cancer, emphasizing its regulation of autophagy and apoptosis. Our goal is to highlight the potential of specific small molecule inhibitors targeting this pathway, fostering the development of novel, tailored cancer treatments.
Collapse
Affiliation(s)
- Nayana A Menon
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore, 632004, Tamil Nadu, India
| | - Pournami Ramachandran
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Britny Blaize
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Mridul Gautam
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
2
|
Wang L, Zhu R, Wen Z, Fan HJS, Norwood-Jackson T, Jathan D, Lee HJ. Structural and Functional Insights into Dishevelled-Mediated Wnt Signaling. Cells 2024; 13:1870. [PMID: 39594618 PMCID: PMC11592973 DOI: 10.3390/cells13221870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Dishevelled (DVL) proteins precisely control Wnt signaling pathways with many effectors. While substantial research has advanced our understanding of DVL's role in Wnt pathways, key questions regarding its regulatory mechanisms and interactions remain unresolved. Herein, we present the recent advances and perspectives on how DVL regulates signaling. The experimentally determined conserved domain structures of DVL in conjunction with AlphaFold-predicted structures are used to understand the DVL's role in Wnt signaling regulation. We also summarize the role of DVL in various diseases and provide insights into further directions for research on the DVL-mediated signaling mechanisms. These findings underscore the importance of DVL as a pharmaceutical target or biological marker in diseases, offering exciting potential for future biomedical applications.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Rui Zhu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Zehua Wen
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; (L.W.); (R.Z.); (Z.W.); (H.-J.S.F.)
| | - Teresa Norwood-Jackson
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| | - Danielle Jathan
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| | - Ho-Jin Lee
- Division of Natural & Mathematical Sciences, LeMoyne-Owen College, Memphis, TN 38126, USA; (T.N.-J.); (D.J.)
| |
Collapse
|
3
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
4
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
5
|
Griffiths SC, Tan J, Wagner A, Blazer LL, Adams JJ, Srinivasan S, Moghisaei S, Sidhu SS, Siebold C, Ho HYH. Structure and function of the ROR2 cysteine-rich domain in vertebrate noncanonical WNT5A signaling. eLife 2024; 13:e71980. [PMID: 38780011 PMCID: PMC11219042 DOI: 10.7554/elife.71980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.
Collapse
Affiliation(s)
- Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| | - Armin Wagner
- Science Division, Diamond Light Source, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | - Levi L Blazer
- School of Pharmacy, University of WaterlooWaterlooCanada
| | | | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| | - Shayan Moghisaei
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| | | | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis School of MedicineDavisUnited States
| |
Collapse
|
6
|
Kamizaki K, Minami Y, Nishita M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell Dev Biol Anim 2024; 60:489-501. [PMID: 38587578 DOI: 10.1007/s11626-024-00885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/09/2024]
Abstract
Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
| |
Collapse
|
7
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S. Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature 2024; 625:126-133. [PMID: 38123680 PMCID: PMC10764289 DOI: 10.1038/s41586-023-06850-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.
Collapse
Affiliation(s)
- Chengting Zhang
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
9
|
Hanly JJ, Loh LS, Mazo-Vargas A, Rivera-Miranda TS, Livraghi L, Tendolkar A, Day CR, Liutikaite N, Earls EA, Corning OBWH, D'Souza N, Hermina-Perez JJ, Mehta C, Ainsworth JA, Rossi M, Papa R, McMillan WO, Perry MW, Martin A. Frizzled2 receives WntA signaling during butterfly wing pattern formation. Development 2023; 150:dev201868. [PMID: 37602496 PMCID: PMC10560568 DOI: 10.1242/dev.201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Amruta Tendolkar
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Christopher R. Day
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27708, USA
| | - Neringa Liutikaite
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Emily A. Earls
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Olaf B. W. H. Corning
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Natalie D'Souza
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - José J. Hermina-Perez
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Caroline Mehta
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Julia A. Ainsworth
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Matteo Rossi
- Division of Evolutionary Biology, Ludwig Maximilian University, Munich 80539, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan 00931, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan 00931, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma 43121, Italy
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Michael W. Perry
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
10
|
Gill AK, McCormick PJ, Sochart D, Nalesso G. Wnt signalling in the articular cartilage: A matter of balance. Int J Exp Pathol 2023; 104:56-63. [PMID: 36843204 PMCID: PMC10009303 DOI: 10.1111/iep.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/28/2023] Open
Abstract
Degradation of the articular cartilage is a hallmark of osteoarthritis, a progressive and chronic musculoskeletal condition, affecting millions of people worldwide. The activation of several signalling cascades is altered during disease development: among them, the Wnt signalling plays a pivotal role in the maintenance of tissue homeostasis. Increasing evidence is showing that its activation needs to be maintained within a certain range to avoid the triggering of degenerative mechanisms. In this review, we summarise our current knowledge about how a balanced activation of the Wnt signalling is maintained in the articular cartilage, with a particular focus on receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Amandeep Kaur Gill
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, London, UK
| | - David Sochart
- South West London Elective Orthopaedic Centre, Epsom, UK
| | - Giovanna Nalesso
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
12
|
Abstract
In light of the demonstrated antagonism of Wnt5A signaling toward the growth of several bacterial pathogens, it was important to study the influence of Wnt5A on gut-resident bacteria and its outcome. Here, we demonstrate that in contrast to inhibiting the survival of the established gut pathogen Salmonella enterica, Wnt5A clearly promotes the survival of the common gut commensals Enterococcus faecalis and Lactobacillus rhamnosus within macrophages through a self-perpetuating Wnt5A-actin axis. A Wnt5A-actin axis furthermore regulates the subsistence of the natural bacterial population of the Peyer's patches, as is evident from the diminution in the countable bacterial CFU therein through the application of Wnt5A signaling and actin assembly inhibitors. Wnt5A dependency of the gut-resident bacterial population is also manifested in the notable difference between the bacterial diversities associated with the feces and Peyer's patches of Wnt5A heterozygous mice, which lack a functional copy of the Wnt5A gene, and their wild-type counterparts. Alterations in the gut commensal bacterial population resulting from either the lack of a copy of the Wnt5A gene or inhibitor-mediated attenuation of Wnt5A signaling are linked with significant differences in cell surface major histocompatibility complex (MHC) II levels and regulatory versus activated CD4 T cells associated with the Peyer's patches. Taken together, our findings reveal the significance of steady state Wnt5A signaling in shaping the gut commensal bacterial population and the T cell repertoire linked to it, thus unveiling a crucial control device for the maintenance of gut bacterial diversity and T cell homeostasis. IMPORTANCE Gut commensal bacterial diversity and T cell homeostasis are crucial entities of the host innate immune network, yet the molecular details of host-directed signaling pathways that sustain the steady state of gut bacterial colonization and T cell activation remain unclear. Here, we describe the protective role of a Wnt5A-actin axis in the survival of several gut bacterial commensals and its necessity in shaping gut bacterial colonization and the associated T cell repertoire. This study opens up new avenues of investigation into the role of the Wnt5A-actin axis in protection of the gut from dysbiosis-related inflammatory disorders.
Collapse
|
13
|
Potential receptors in Fenneropenaeus merguiensis ovary and role of saxophone, the bone morphogenetic protein receptor, in ovarian development. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111141. [PMID: 34990826 DOI: 10.1016/j.cbpa.2021.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
Receptors, which play an initial role in signaling pathways in several physiological processes, including reproduction, are among the several molecular factors that control ovarian development in organisms. This study aimed to identify and study receptors potentially involved in controlling the reproductive process of female banana shrimp, Fenneropenaeus merguiensis. Ovarian transcriptomes derived from 4 developmental stages were generated by RNA sequencing. A total of 53,763 transcripts were obtained from the de novo assembled transcriptome, and 663 genes were identified as receptors. Among them, 185 receptors were differentially expressed during ovarian development. Fifteen of these differentially expressed receptors showed distinct expression patterns that were validated by RT-qPCR. Bone morphogenetic protein receptors (BMPR) and their signaling genes were investigated for their roles in shrimp vitellogenesis. The expressions of F. merguiensis saxophone (FmSax), a BMP type I receptor, and BMP type II receptor (FmBMPRII) as well as FmMad, FmMed, and FmSMAD3 were significantly altered during ovarian development. RNA interference was used to investigate the role of FmSax in vitellogenesis. The result indicated that the expression of vitellogenin (Vg) was significantly reduced in both ovary and hepatopancreas of FmSax-knockdown shrimp compared to control shrimp. Furthermore, in FmSax-silencing shrimp, FmBMPRII, FmMad, and FmMed expressions were decreased as well as Vg expression. These findings suggest that FmSax positively regulates Vg synthesis via the BMP signaling pathway.
Collapse
|
14
|
Castro MV, Lopez-Bergami P. Cellular and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 2022; 170:103595. [PMID: 35032666 DOI: 10.1016/j.critrevonc.2022.103595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are Wnt receptors that are critical for β-catenin-independent Wnt pathways and have been linked to processes driving tumor progression, such as cell proliferation, survival, invasion, and therapy resistance. Both receptors have garnered interest as potential therapeutic targets since they are largely absent in adult tissue, are overexpressed in several cancers, and, as members of the receptor tyrosine kinase family, are easier to target than all other components of the pathway. Unlike ROR1 which always promotes tumorigenesis, ROR2 has a very complex role in cancer acting either to promote or inhibit tumor progression in different tumor types. In the present article, we summarize the findings on ROR2 expression in cancer patients and its impact on clinical outcome. Further, we review the biological processes and signaling pathways regulated by ROR2 that explain its dual role in cancer. Finally, we describe the ongoing strategies to target ROR2 in cancer.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina.
| |
Collapse
|