1
|
Wan B, Zhang L, Wang X, Zhang R, Li L, Zhang Y, Chen Z, Hu C. Fam172a Mediates the Stimulation of Hypothalamic Oxytocin Neurons to Suppress Obesity-Induced Anxiety. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414723. [PMID: 39960327 PMCID: PMC11984834 DOI: 10.1002/advs.202414723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/25/2025] [Indexed: 03/29/2025]
Abstract
Anxiety disorder is the most common mental disorder worldwide. Although human studies have demonstrated a positive association between obesity and anxiety disorder, the exact mechanism linking these conditions is unclear. Interestingly, oxytocin (Oxt) neurons, predominantly expressed in the hypothalamic paraventricular nucleus (PVN), play a crucial role in both obesity and anxiety. In this study, obesity can induce anxiety-like behavior in mice, which can be ameliorated by the activation of PVN Oxt neurons. Conversely, inhibiting PVN Oxt neurons accelerate the progression of anxiety. Moreover, the family with sequence similarity 172, member A (Fam172a), an anxiety susceptibility gene, is highly expressed in the hypothalamic PVN Oxt neuron but reduce in the PVN Oxt neuron of mice in the high-fat diet and acute restraint stress conditions. Significantly, overexpression of Fam172a in PVN Oxt neurons improve obesity-anxiety-like behavior in mice. In contrast, disruption of Fam172a in PVN Oxt neurons exacerbate obesity-anxiety-like behavior. Furthermore, this study demonstrates that Fam172a is involved in mRNA degradation in Oxt neurons by regulating the intranuclear transport of Argonaute 2, thereby influencing Oxt secretion and ultimately impacting obesity-anxiety-like behavior. These findings suggest that Fam172a serves as a key target of PVN Oxt neurons in the regulation of obesity-induced anxiety.
Collapse
Affiliation(s)
- Baocheng Wan
- Jinzhou Medical University Graduate Training BaseShanghai Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lina Zhang
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xinyu Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Rong Zhang
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lianxi Li
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yi Zhang
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhuo Chen
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Cheng Hu
- Jinzhou Medical University Graduate Training BaseShanghai Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200233China
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghai201449China
| |
Collapse
|
2
|
Zhang Y, Ma K, Fang X, Zhang Y, Miao R, Guan H, Tian J. Targeting ion homeostasis in metabolic diseases: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107579. [PMID: 39756557 DOI: 10.1016/j.phrs.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The incidence of metabolic diseases-hypertension, diabetes, obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and atherosclerosis-is increasing annually, imposing a significant burden on both human health and the social economy. The occurrence and development of these diseases are closely related to the disruption of ion homeostasis, which is crucial for maintaining cellular functions and metabolic equilibrium. However, the specific mechanism of ion homeostasis in metabolic diseases is still unclear. This article reviews the role of ion homeostasis in the pathogenesis of metabolic diseases and assesses its potential as a therapeutic target. Furthermore, the article explores pharmacological strategies that target ion channels and transporters, including existing drugs and emerging drugs under development. Lastly, the article discusses the development direction of future therapeutic strategies, including the possibility of gene therapy targeting specific ion channels and personalized therapy using novel biomarkers. In summary, targeting ion homeostasis provides a new perspective and potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
3
|
Chen Z, Wan B, Zhang H, Zhang L, Zhang R, Li L, Zhang Y, Hu C. Histone lactylation mediated by Fam172a in POMC neurons regulates energy balance. Nat Commun 2024; 15:10111. [PMID: 39578459 PMCID: PMC11584794 DOI: 10.1038/s41467-024-54488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Glycolysis-derived lactate was identified as substrate for histone lactylation, which has been regarded as a significant role in transcriptional regulation in many tissues. However, the role of histone lactylation in the metabolic center, the hypothalamus, is still unknown. Here, we show that hypothalamic pro-opiomelanocortin (POMC) neuron-specific deletion of family with sequence similarity 172, member A (Fam172a) can increase histone lactylation and protect mice against diet-induced obesity (DIO) and related metabolic disorders. Conversely, overexpression of Fam172a in POMC neurons led to an obesity-like phenotype. Using RNA-seq and CUT&Tag chromatin profiling analyzes, we find that knockdown of Fam172a activates the glycolytic process and increases peptidylglycine α-amidating monooxygenase (PAM), which affects the synthesis of α-MSH, via H4K12la (histone lactylation). In addition, pharmacological inhibition of lactate production clearly abrogates the anti-obesity effect of PFKO (POMC-Cre, Fam172aloxP/loxP, POMC neurons Fam172a knockout). These findings highlight the importance of Fam172a and lactate in the development of obesity and our results mainly concern male mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocheng Wan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianxi Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.
| |
Collapse
|
4
|
Zhang Y, Chen L, Xuan Y, Zhang L, Tian W, Zhu Y, Wang J, Wang X, Qiu J, Yu J, Tang M, He Z, Zhang H, Chen S, Shen Y, Wang S, Zhang R, Xu L, Ma X, Liao Y, Hu C. Iron overload in hypothalamic AgRP neurons contributes to obesity and related metabolic disorders. Cell Rep 2024; 43:113900. [PMID: 38460132 DOI: 10.1016/j.celrep.2024.113900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/11/2024] Open
Abstract
Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liwei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ye Xuan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lina Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Tian
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Endocrinology, Jinzhou Medical University, Jinzhou 121001, China
| | - Yangyang Zhu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China
| | - Jinghui Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Endocrinology, Xihua Xian People's Hospital, Zhoukou 466000, China
| | - Xinyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mengyang Tang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China
| | - Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Si Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun Shen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Siyi Wang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China.
| |
Collapse
|
5
|
Ma K, Yin K, Li J, Ma L, Zhou Q, Lu X, Li B, Li J, Wei G, Zhang G. The Hypothalamic Epigenetic Landscape in Dietary Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306379. [PMID: 38115764 PMCID: PMC10916675 DOI: 10.1002/advs.202306379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The hypothalamus in the brain plays a pivotal role in controlling energy balance in vertebrates. Nutritional excess through high-fat diet (HFD) feeding can dysregulate hypothalamic signaling at multiple levels. Yet, it remains largely unknown in what magnitude HFD feeding may impact epigenetics in this brain region. Here, it is shown that HFD feeding can significantly alter hypothalamic epigenetic events, including posttranslational histone modifications, DNA methylation, and chromatin accessibility. The authors comprehensively analyze the chromatin immunoprecipitation-sequencing (ChIP-seq), methylated DNA immunoprecipitation-sequencing (MeDIP-seq), single nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), and RNA-seq data of the hypothalamus of C57 BL/6 mice fed with a chow or HFD for 1 to 6 months. The chromatins are categorized into 6 states using the obtained ChIP-seq data for H3K4me3, H3K27ac, H3K9me3, H3K27me3, and H3K36me3. A 1-month HFD feeding dysregulates histone modifications and DNA methylation more pronouncedly than that of 3- or 6-month. Besides, HFD feeding differentially impacts chromatin accessibility in hypothalamic cells. Thus, the epigenetic landscape is dysregulated in the hypothalamus of dietary obesity mice.
Collapse
Affiliation(s)
- Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Kaili Yin
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Jiong Li
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li Ma
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Qun Zhou
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Bo Li
- Department of EndocrinologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Juxue Li
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Gang Wei
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Guo Zhang
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Pathophysiology, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Institute of Metabolism and HealthHenan UniversityKaifengHenanChina
- Zhongzhou LaboratoryZhengzhouHenan450046China
| |
Collapse
|
6
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
7
|
Zhang Y, Chu G, Leng Y, Lin X, Zhou H, Lu Y, Liu B. Parvalbumin-positive neurons in the medial vestibular nucleus contribute to vestibular compensation through commissural inhibition. Front Cell Neurosci 2023; 17:1260243. [PMID: 38026699 PMCID: PMC10663245 DOI: 10.3389/fncel.2023.1260243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background The commissural inhibitory system between the bilateral medial vestibular nucleus (MVN) plays a key role in vestibular compensation. Calcium-binding protein parvalbumin (PV) is expressed in MVN GABAergic neurons. Whether these neurons are involved in vestibular compensation is still unknown. Methods After unilateral labyrinthectomy (UL), we measured the activity of MVN PV neurons by in vivo calcium imaging, and observed the projection of MVN PV neurons by retrograde neural tracing. After regulating PV neurons' activity by chemogenetic technique, the effects on vestibular compensation were evaluated by behavior analysis. Results We found PV expression and the activity of PV neurons in contralateral but not ipsilateral MVN increased 6 h following UL. ErbB4 is required to maintain GABA release for PV neurons, conditional knockout ErbB4 from PV neurons promoted vestibular compensation. Further investigation showed that vestibular compensation could be promoted by chemogenetic inhibition of contralateral MVN or activation of ipsilateral MVN PV neurons. Additional neural tracing study revealed that considerable MVN PV neurons were projecting to the opposite side of MVN, and that activating the ipsilateral MVN PV neurons projecting to contralateral MVN can promote vestibular compensation. Conclusion Contralateral MVN PV neuron activation after UL is detrimental to vestibular compensation, and rebalancing bilateral MVN PV neuron activity can promote vestibular compensation, via commissural inhibition from the ipsilateral MVN PV neurons. Our findings provide a new understanding of vestibular compensation at the neural circuitry level and a novel potential therapeutic target for vestibular disorders.
Collapse
Affiliation(s)
- Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|