1
|
Hsu LM, Shih YYI. Neuromodulation in Small Animal fMRI. J Magn Reson Imaging 2025; 61:1597-1617. [PMID: 39279265 PMCID: PMC11903207 DOI: 10.1002/jmri.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
The integration of functional magnetic resonance imaging (fMRI) with advanced neuroscience technologies in experimental small animal models offers a unique path to interrogate the causal relationships between regional brain activity and brain-wide network measures-a goal challenging to accomplish in human subjects. This review traces the historical development of the neuromodulation techniques commonly used in rodents, such as electrical deep brain stimulation, optogenetics, and chemogenetics, and focuses on their application with fMRI. We discuss their advantageousness roles in uncovering the signaling architecture within the brain and the methodological considerations necessary when conducting these experiments. By presenting several rodent-based case studies, we aim to demonstrate the potential of the multimodal neuromodulation approach in shedding light on neurovascular coupling, the neural basis of brain network functions, and their connections to behaviors. Key findings highlight the cell-type and circuit-specific modulation of brain-wide activity patterns and their behavioral correlates. We also discuss several future directions and feature the use of mediation and moderation analytical models beyond the intuitive evoked response mapping, to better leverage the rich information available in fMRI data with neuromodulation. Using fMRI alongside neuromodulation techniques provide insights into the mesoscopic (relating to the intermediate scale between single neurons and large-scale brain networks) and macroscopic fMRI measures that correlate with specific neuronal events. This integration bridges the gap between different scales of neuroscience research, facilitating the exploration and testing of novel therapeutic strategies aimed at altering network-mediated behaviors. In conclusion, the combination of fMRI with neuromodulation techniques provides crucial insights into mesoscopic and macroscopic brain dynamics, advancing our understanding of brain function in health and disease. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill
- Departments of Radiology, The University of North Carolina at Chapel Hill
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill
- Departments of Neurology, The University of North Carolina at Chapel Hill
| |
Collapse
|
2
|
Szinyei AZ, Maus B, Schmid JQ, Klimek M, Segelcke D, Pogatzki-Zahn EM, Pradier B, Faber C. Systematic evaluation of adhesives for implant fixation in multimodal functional brain MRI. MAGMA (NEW YORK, N.Y.) 2025; 38:191-205. [PMID: 39812910 PMCID: PMC11913989 DOI: 10.1007/s10334-024-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Invasive multimodal fMRI in rodents is often compromised by susceptibility artifacts from adhesives used to secure cranial implants. We hypothesized that adhesive type, shape, and field strength significantly affect susceptibility artifacts, and systematically evaluated various adhesives. MATERIALS AND METHODS Thirty-one adhesives were applied in constrained/unconstrained geometries and imaged with T2*-weighted EPI at 7.0 and 9.4 T to assess artifact depths. Spherical and flat patch shapes, both unconstrained geometries, were compared for artifact depth in vitro and in vivo. Adhesion strength was assessed on post-mortem mouse crania. Finally, an integrative scoring system rated adhesive properties, including artifact depth, handling, and adhesion strength. RESULTS Susceptibility artifacts were two times larger at 9.4 than at 7.0 T (p < 0.001), strongest at the patch edges, and deeper with spherical than flat patches (p < 0.05). Artifact size depended more on shape and volume after curing than adhesive type. Our integrative scoring system showed resins, bonding agents, and acrylics offered the best overall properties, while silicones and cements were less favorable. DISCUSSION Adhesive selection requires balancing handling, curing time, strength, and artifact depth. To minimize artifacts, adhesives should be applied in a spread-out, flat and thin layer. Our integrative scoring system supports classification of future classes of adhesives.
Collapse
Affiliation(s)
- Anna Zsófia Szinyei
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany
| | - Bastian Maus
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany
| | - Jonas Q Schmid
- Department of Orthodontics, University of Münster, Albert-Schweitzer-Campus 1, building W30, 48149, Münster, Germany
| | - Matthias Klimek
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Albert-Schweitzer-Campus 1, building W1, 48149, Münster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, building A1, 48149, Münster, Germany
| | - Esther M Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, building A1, 48149, Münster, Germany
| | - Bruno Pradier
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, building A1, 48149, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, building A16, 48149, Münster, Germany.
| |
Collapse
|
3
|
Pedroncini O, Federman N, Marin-Burgin A. Lateral entorhinal cortex afferents reconfigure the activity in piriform cortex circuits. Proc Natl Acad Sci U S A 2024; 121:e2414038121. [PMID: 39570314 PMCID: PMC11621770 DOI: 10.1073/pnas.2414038121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Odors are key signals for guiding spatial behaviors such as foraging and navigation in rodents. Recent findings reveal that odor representations in the piriform cortex (PCx) also encode spatial context information. However, the brain origins of this information and its integration into PCx microcircuitry remain unclear. This study investigates the lateral entorhinal cortex (LEC) as a potential source of spatial contextual information affecting the PCx microcircuit and its olfactory responses. Using mice brain slices, we performed patch-clamp recordings on superficial (SP) and deep (DP) pyramidal neurons, as well as parvalbumin (PV) and somatostatin (SOM) inhibitory interneurons. Concurrently, we optogenetically stimulated excitatory LEC projections to observe their impact on PCx activity. Results show that LEC inputs are heterogeneously distributed in the PCx microcircuit, evoking larger excitatory currents in SP and PV neurons due to higher monosynaptic connectivity. LEC inputs also differentially affect inhibitory circuits, activating PV while suppressing SOM interneurons. Studying the interaction between LEC inputs and sensory signals from the lateral olfactory tract (LOT) revealed that simultaneous LEC and LOT activation increases spiking in SP and DP neurons, with DP neurons showing a sharpened response due to LEC-induced inhibition that suppresses delayed LOT-evoked spikes. This suggests a regulatory mechanism where LEC inputs inhibit recurrent activity by activating PV interneurons. Our findings demonstrate that LEC afferents reconfigure PCx activity, aiding the understanding of how odor objects form within the PCx by integrating olfactory and nonolfactory information.
Collapse
Affiliation(s)
- Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas-Partner Institute of the Max Planck Society, Buenos AiresC1425FQD, Argentina
| | - Noel Federman
- Instituto de Investigación en Biomedicina de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas-Partner Institute of the Max Planck Society, Buenos AiresC1425FQD, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas-Partner Institute of the Max Planck Society, Buenos AiresC1425FQD, Argentina
| |
Collapse
|
4
|
Lazari A, Tachrount M, Valverde JM, Papp D, Beauchamp A, McCarthy P, Ellegood J, Grandjean J, Johansen-Berg H, Zerbi V, Lerch JP, Mars RB. The mouse motor system contains multiple premotor areas and partially follows human organizational principles. Cell Rep 2024; 43:114191. [PMID: 38717901 DOI: 10.1016/j.celrep.2024.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/10/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juan Miguel Valverde
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70150 Kuopio, Finland
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul McCarthy
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFL, 1015 Lausanne, Switzerland; CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
5
|
Gohil C, Huang R, Roberts E, van Es MWJ, Quinn AJ, Vidaurre D, Woolrich MW. osl-dynamics, a toolbox for modeling fast dynamic brain activity. eLife 2024; 12:RP91949. [PMID: 38285016 PMCID: PMC10945565 DOI: 10.7554/elife.91949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Neural activity contains rich spatiotemporal structure that corresponds to cognition. This includes oscillatory bursting and dynamic activity that span across networks of brain regions, all of which can occur on timescales of tens of milliseconds. While these processes can be accessed through brain recordings and imaging, modeling them presents methodological challenges due to their fast and transient nature. Furthermore, the exact timing and duration of interesting cognitive events are often a priori unknown. Here, we present the OHBA Software Library Dynamics Toolbox (osl-dynamics), a Python-based package that can identify and describe recurrent dynamics in functional neuroimaging data on timescales as fast as tens of milliseconds. At its core are machine learning generative models that are able to adapt to the data and learn the timing, as well as the spatial and spectral characteristics, of brain activity with few assumptions. osl-dynamics incorporates state-of-the-art approaches that can be, and have been, used to elucidate brain dynamics in a wide range of data types, including magneto/electroencephalography, functional magnetic resonance imaging, invasive local field potential recordings, and electrocorticography. It also provides novel summary measures of brain dynamics that can be used to inform our understanding of cognition, behavior, and disease. We hope osl-dynamics will further our understanding of brain function, through its ability to enhance the modeling of fast dynamic processes.
Collapse
Affiliation(s)
- Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Rukuang Huang
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Evan Roberts
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Mats WJ van Es
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
6
|
Chen Y, Fernandez Z, Scheel N, Gifani M, Zhu DC, Counts SE, Dorrance AM, Razansky D, Yu X, Qian W, Qian C. Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal from susceptibility compensation in rats. Cereb Cortex 2024; 34:bhad479. [PMID: 38100332 PMCID: PMC10793587 DOI: 10.1093/cercor/bhad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Zachary Fernandez
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Scott E Counts
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49508, United States
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105, United States
| | - Anne M Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich 8006, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Institute for Biomedical Engineering, , Zurich 8092, Switzerland
- Zurich Neuroscience Center, Zurich 8057, Switzerland
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Chunqi Qian
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
7
|
Brown JA, Clancy KJ, Chen C, Zeng Y, Qin S, Ding M, Li W. Transcranial stimulation of alpha oscillations modulates brain state dynamics in sustained attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542583. [PMID: 37398325 PMCID: PMC10312462 DOI: 10.1101/2023.05.27.542583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The brain operates an advanced complex system to support mental activities. Cognition is thought to emerge from dynamic states of the complex brain system, which are organized spatially through large-scale neural networks and temporally via neural synchrony. However, specific mechanisms underlying these processes remain obscure. Applying high-definition alpha-frequency transcranial alternating-current stimulation (HD α-tACS) in a continuous performance task (CPT) during functional resonance imaging (fMRI), we causally elucidate these major organizational architectures in a key cognitive operation-sustained attention. We demonstrated that α-tACS enhanced both electroencephalogram (EEG) alpha power and sustained attention, in a correlated fashion. Akin to temporal fluctuations inherent in sustained attention, our hidden Markov modeling (HMM) of fMRI timeseries uncovered several recurrent, dynamic brain states, which were organized through a few major neural networks and regulated by the alpha oscillation. Specifically, during sustain attention, α-tACS regulated the temporal dynamics of the brain states by suppressing a Task-Negative state (characterized by activation of the default mode network/DMN) and Distraction state (with activation of the ventral attention and visual networks). These findings thus linked dynamic states of major neural networks and alpha oscillations, providing important insights into systems-level mechanisms of attention. They also highlight the efficacy of non-invasive oscillatory neuromodulation in probing the functioning of the complex brain system and encourage future clinical applications to improve neural systems health and cognitive performance.
Collapse
Affiliation(s)
- Joshua A. Brown
- Department of Psychology, Florida State University, Tallahassee, FL
| | - Kevin J. Clancy
- Department of Psychology, Florida State University, Tallahassee, FL
| | - Chaowen Chen
- Department of Psychology, Florida State University, Tallahassee, FL
- Tallahassee Memorial Healthcare, Tallahassee, FL
| | - Yimeng Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Mingzhou Ding
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL
| |
Collapse
|
8
|
Chen HF, Lambers H, Nagelmann N, Sandbrink M, Segelcke D, Pogatzki-Zahn E, Faber C, Pradier B. Generation of a whole-brain hemodynamic response function and sex-specific differences in cerebral processing of mechano-sensation in mice detected by BOLD fMRI. Front Neurosci 2023; 17:1187328. [PMID: 37700753 PMCID: PMC10493293 DOI: 10.3389/fnins.2023.1187328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
BOLD fMRI has become a prevalent method to study cerebral sensory processing in rodent disease models, including pain and mechanical hypersensitivity. fMRI data analysis is frequently combined with a general-linear-model (GLM) -based analysis, which uses the convolution of a hemodynamic response function (HRF) with the stimulus paradigm. However, several studies indicated that the HRF differs across species, sexes, brain structures, and experimental factors, including stimulation modalities or anesthesia, and hence might strongly affect the outcome of BOLD analyzes. While considerable work has been done in humans and rats to understand the HRF, much less is known in mice. As a prerequisite to investigate mechano-sensory processing and BOLD fMRI data in male and female mice, we (1) designed a rotating stimulator that allows application of two different mechanical modalities, including innocuous von Frey and noxious pinprick stimuli and (2) determined and statistically compared HRFs across 30 brain structures and experimental conditions, including sex and, stimulus modalities. We found that mechanical stimulation lead to brain-wide BOLD signal changes thereby allowing extraction of HRFs from multiple brain structures. However, we did not find differences in HRFs across all brain structures and experimental conditions. Hence, we computed a whole-brain mouse HRF, which is based on 88 functional scans from 30 mice. A comparison of this mouse-specific HRF with our previously reported rat-derived HRF showed significantly slower kinetics in mice. Finally, we detected pronounced differences in cerebral BOLD activation between male and female mice with mechanical stimulation, thereby exposing divergent processing of noxious and innocuous stimuli in both sexes.
Collapse
Affiliation(s)
- Hui-Fen Chen
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Henriette Lambers
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Nina Nagelmann
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Martin Sandbrink
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
| | - Bruno Pradier
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, Münster, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Salvan P, Fonseca M, Winkler AM, Beauchamp A, Lerch JP, Johansen-Berg H. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat Neurosci 2023; 26:53-63. [PMID: 36522497 PMCID: PMC9829536 DOI: 10.1038/s41593-022-01213-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
Although we understand how serotonin receptors function at the single-cell level, what role different serotonin receptors play in regulating brain-wide activity and, in turn, human behavior, remains unknown. Here, we developed transcriptomic-neuroimaging mapping to characterize brain-wide functional signatures associated with specific serotonin receptors: serotonin receptor networks (SRNs). Probing SRNs with optogenetics-functional magnetic resonance imaging (MRI) and pharmacology in mice, we show that activation of dorsal raphe serotonin neurons differentially modulates the amplitude and functional connectivity of different SRNs, showing that receptors' spatial distributions can confer specificity not only at the local, but also at the brain-wide, network level. In humans, using resting-state functional MRI, SRNs replicate established divisions of serotonin effects on impulsivity and negative biases. These results provide compelling evidence that heterogeneous brain-wide distributions of different serotonin receptor types may underpin behaviorally distinct modes of serotonin regulation. This suggests that serotonin neurons may regulate multiple aspects of human behavior via modulation of large-scale receptor networks.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Madalena Fonseca
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Heidi Johansen-Berg
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Lee JH, Liu Q, Dadgar-Kiani E. Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI. Science 2022; 378:493-499. [PMID: 36327349 PMCID: PMC10543742 DOI: 10.1126/science.abq3868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Can we construct a model of brain function that enables an understanding of whole-brain circuit mechanisms underlying neurological disease and use it to predict the outcome of therapeutic interventions? How are pathologies in neurological disease, some of which are observed to have spatial spreading mechanisms, associated with circuits and brain function? In this review, we discuss approaches that have been used to date and future directions that can be explored to answer these questions. By combining optogenetic functional magnetic resonance imaging (fMRI) with computational modeling, cell type-specific, large-scale brain circuit function and dysfunction are beginning to be quantitatively parameterized. We envision that these developments will pave the path for future therapeutics developments based on a systems engineering approach aimed at directly restoring brain function.
Collapse
Affiliation(s)
- Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, CA 94305, USA
| | - Qin Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ehsan Dadgar-Kiani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Mandino F, Yeow LY, Bi R, Sejin L, Bae HG, Baek SH, Lee CY, Mohammad H, Horien C, Teoh CL, Lee JH, Lai MK, Jung S, Fu Y, Olivo M, Gigg J, Grandjean J. The lateral entorhinal cortex is a hub for local and global dysfunction in early Alzheimer's disease states. J Cereb Blood Flow Metab 2022; 42:1616-1631. [PMID: 35466772 PMCID: PMC9441719 DOI: 10.1177/0271678x221082016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Functional network activity alterations are one of the earliest hallmarks of Alzheimer's disease (AD), detected prior to amyloidosis and tauopathy. Better understanding the neuronal underpinnings of such network alterations could offer mechanistic insight into AD progression. Here, we examined a mouse model (3xTgAD mice) recapitulating this early AD stage. We found resting functional connectivity loss within ventral networks, including the entorhinal cortex, aligning with the spatial distribution of tauopathy reported in humans. Unexpectedly, in contrast to decreased connectivity at rest, 3xTgAD mice show enhanced fMRI signal within several projection areas following optogenetic activation of the entorhinal cortex. We corroborate this finding by demonstrating neuronal facilitation within ventral networks and synaptic hyperexcitability in projection targets. 3xTgAD mice, thus, reveal a dichotomic hypo-connected:resting versus hyper-responsive:active phenotype. This strong homotopy between the areas affected supports the translatability of this pathophysiological model to tau-related, early-AD deficits in humans.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Department of Radiology and Bioimaging Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ling Yun Yeow
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Renzhe Bi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Lee Sejin
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Han Gyu Bae
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore.,Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Seung Hyun Baek
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Chun-Yao Lee
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Hasan Mohammad
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Corey Horien
- Department of Radiology and Bioimaging Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Chai Lean Teoh
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Jasinda H Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell Kp Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sangyong Jung
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Yu Fu
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Malini Olivo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - John Gigg
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore.,Department of Radiology and Nuclear Medicine & Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Centre, The Netherlands
| |
Collapse
|