1
|
Upadhya M, Stumpf A, O'Brien-Cairney J, Gómez CC, Döring J, Hoffmann J, Mueller S, Fukata Y, van Hoof S, Dhangar D, Wilson MA, Atwal A, Rosch R, Woodhall G, Boehm-Sturm P, Fukata M, Kreye J, Schmitz D, Wright SK, Kornau HC, Prüss H. Patient-derived monoclonal LGI1 autoantibodies elicit seizures, behavioral changes and brain MRI abnormalities in rodent models. Brain Behav Immun 2025; 126:342-355. [PMID: 39984135 DOI: 10.1016/j.bbi.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE Limbic encephalitis with leucine-rich glioma inactivated 1 (LGI1) protein autoantibodies is associated with cognitive impairment, psychiatric symptoms, and seizures, including faciobrachial dystonic seizures (FBDS). Patient-derived LGI1-autoantibodies cause isolated symptoms of memory deficits in mice and seizures in rats. Using a multimodal experimental approach, we set out to improve the validity of existing in vivo rodent models to further recapitulate the full clinical syndrome of anti-LGI1 antibody mediated disease. METHODS A monoclonal anti-LGI1 antibody (anti-LGI1 mAb) derived from a patient's CSF antibody-secreting cell was infused intracerebroventricularly (ICV) into rats and mice for one or two weeks, respectively. Cellular excitability of CA3 pyramidal neurons was determined in hippocampal slices. Structural changes in mouse brains were explored using MRI. Antibody effects on behavior and brain activity of rats were studied using video-EEG. RESULTS Anti-LGI1 mAbs augmented the excitability of CA3 pyramidal neurons and elicited convulsive and non-convulsive spontaneous epileptic seizures in mice and rats. Mice displayed a hypoactive and anxious phenotype during behavioral testing. MRI revealed acutely increased hippocampal volume after ICV anti-LGI1 mAb infusion. Video-EEG recordings of juvenile rats uncovered two peaks of seizure frequency during the 7-day antibody infusion period resembling the natural progression of seizures in human anti-LGI1 encephalitis. INTERPRETATION Our data strongly corroborate and extend our understanding of the direct pathogenic and epileptogenic role of human LGI1 autoantibodies.
Collapse
Affiliation(s)
- Manoj Upadhya
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Alexander Stumpf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany
| | - Jack O'Brien-Cairney
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - César Cordero Gómez
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Jan Döring
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Julius Hoffmann
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuko Fukata
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Scott van Hoof
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Divya Dhangar
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Max A Wilson
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Arunvir Atwal
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Richard Rosch
- Department of Clinical Neurophysiology, King's College Hospital London NHS Foundation Trust, London, United Kingdom; Departments of Neurology and Pediatrics, Columbia University, NY, USA
| | - Gavin Woodhall
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jakob Kreye
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Sukhvir K Wright
- Institute of Health and Neurodevelopment, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Birmingham Women's and Children's Hospital NHS Trust, Birmingham, United Kingdom.
| | - Hans-Christian Kornau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
2
|
Panda PK, Palayullakandi A, Gupta D, Sopanam S, Mishra AS, Sharawat IK. Biallelic Mutations in ADAM22 Presenting as Ohtahara Syndrome in an Indian Family: Expanding the Electroclinical Phenotype of ADAM22 -Related Neurologic Disorder. Ann Indian Acad Neurol 2025; 28:282-284. [PMID: 39779255 PMCID: PMC12049222 DOI: 10.4103/aian.aian_706_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Prateek Kumar Panda
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Achanya Palayullakandi
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Diksha Gupta
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Suthiraj Sopanam
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Anand Santosh Mishra
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Indar Kumar Sharawat
- Pediatric Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
3
|
Chen D, Wang J, Cao J, Zhu G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell Signal 2024; 122:111311. [PMID: 39059755 DOI: 10.1016/j.cellsig.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is derived from the conversion of adenosine triphosphate catalysed by adenylyl cyclase (AC). Protein kinase A (PKA), the main effector of cAMP, is a dimeric protein kinase consisting of two catalytic subunits and two regulatory subunits. When cAMP binds to the regulatory subunits of PKA, it leads to the dissociation and activation of PKA, which allows the catalytic subunit of PKA to phosphorylate target proteins, thereby regulating various physiological functions and metabolic processes in cellular function. Recent researches also implicate the involvement of cAMP-PKA signaling in the pathologenesis of anxiety disorder. However, there are still debates on the prevention and treatment of anxiety disorders from this signaling pathway. To review the function of cAMP-PKA signaling in anxiety disorder, we searched the publications with the keywords including "cAMP", "PKA" and "Anxiety" from Pubmed, Embase, Web of Science and CNKI databases. The results showed that the number of publications on cAMP-PKA pathway in anxiety disorder tended to increase. Bioinformatics results displayed a close association between the cAMP-PKA pathway and the occurrence of anxiety. Mechanistically, cAMP-PKA signaling could influence brain-derived neurotrophic factor and neuropeptide Y and participate in the regulation of anxiety. cAMP-PKA signaling could also oppose the dysfunctions of gamma-aminobutyric acid (GABA), intestinal flora, hypothalamic-pituitary-adrenal axis, neuroinflammation, and signaling proteins (MAPK and AMPK) in anxiety. In addition, chemical agents with the ability to activate cAMP-PKA signaling demonstrated therapy potential against anxiety disorders. This review emphasizes the central roles of cAMP-PKA signaling in anxiety and the targets of the cAMP-PKA pathway would be potential candidates for treatment of anxiety. Nevertheless, more laboratory investigations to improve the therapeutic effect and reduce the adverse effect, and continuous clinical research will warrant the drug development.
Collapse
Affiliation(s)
- Daokang Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jian Cao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
4
|
Lyons PJ. Inactive metallopeptidase homologs: the secret lives of pseudopeptidases. Front Mol Biosci 2024; 11:1436917. [PMID: 39050735 PMCID: PMC11266112 DOI: 10.3389/fmolb.2024.1436917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inactive enzyme homologs, or pseudoenzymes, are proteins, found within most enzyme families, that are incapable of performing catalysis. Rather than catalysis, they are involved in protein-protein interactions, sometimes regulating the activity of their active enzyme cousins, or scaffolding protein complexes. Pseudoenzymes found within metallopeptidase families likewise perform these functions. Pseudoenzymes within the M14 carboxypeptidase family interact with collagens within the extracellular space, while pseudopeptidase members of the M12 "a disintegrin and metalloprotease" (ADAM) family either discard their pseudopeptidase domains as unnecessary for their roles in sperm maturation or utilize surface loops to enable assembly of key complexes at neuronal synapses. Other metallopeptidase families contain pseudopeptidases involved in protein synthesis at the ribosome and protein import into organelles, sometimes using their pseudo-active sites for these interactions. Although the functions of these pseudopeptidases have been challenging to study, ongoing work is teasing out the secret lives of these proteins.
Collapse
Affiliation(s)
- Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, United States
| |
Collapse
|
5
|
Ramirez-Franco J, Debreux K, Sangiardi M, Belghazi M, Kim Y, Lee SH, Lévêque C, Seagar M, El Far O. The downregulation of Kv 1 channels in Lgi1 -/-mice is accompanied by a profound modification of its interactome and a parallel decrease in Kv 2 channels. Neurobiol Dis 2024; 196:106513. [PMID: 38663634 DOI: 10.1016/j.nbd.2024.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| | - Kévin Debreux
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Marion Sangiardi
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Maya Belghazi
- Marseille Protéomique (MaP), Plateforme Protéomique IMM, CNRS FR3479, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Yujin Kim
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Suk-Ho Lee
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Christian Lévêque
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Michael Seagar
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Oussama El Far
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
6
|
Cuhadar U, Calzado-Reyes L, Pascual-Caro C, Aberra AS, Ritzau-Jost A, Aggarwal A, Ibata K, Podgorski K, Yuzaki M, Geis C, Hallerman S, Hoppa MB, de Juan-Sanz J. Activity-driven synaptic translocation of LGI1 controls excitatory neurotransmission. Cell Rep 2024; 43:114186. [PMID: 38700985 PMCID: PMC11156761 DOI: 10.1016/j.celrep.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The fine control of synaptic function requires robust trans-synaptic molecular interactions. However, it remains poorly understood how trans-synaptic bridges change to reflect the functional states of the synapse. Here, we develop optical tools to visualize in firing synapses the molecular behavior of two trans-synaptic proteins, LGI1 and ADAM23, and find that neuronal activity acutely rearranges their abundance at the synaptic cleft. Surprisingly, synaptic LGI1 is primarily not secreted, as described elsewhere, but exo- and endocytosed through its interaction with ADAM23. Activity-driven translocation of LGI1 facilitates the formation of trans-synaptic connections proportionally to the history of activity of the synapse, adjusting excitatory transmission to synaptic firing rates. Accordingly, we find that patient-derived autoantibodies against LGI1 reduce its surface fraction and cause increased glutamate release. Our findings suggest that LGI1 abundance at the synaptic cleft can be acutely remodeled and serves as a critical control point for synaptic function.
Collapse
Affiliation(s)
- Ulku Cuhadar
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Lorenzo Calzado-Reyes
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Carlos Pascual-Caro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Aman S Aberra
- Department of Biology, Dartmouth College, Hanover, NH 03755, USA
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Abhi Aggarwal
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Keiji Ibata
- Department of Neurophysiology, Keio University, Tokyo 160-8582, Japan
| | | | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University, Tokyo 160-8582, Japan
| | - Christian Geis
- Department of Neurology, Section Translational Neuroimmunology, Jena University Hospital, 07747 Jena, Germany
| | - Stefan Hallerman
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Michael B Hoppa
- Department of Biology, Dartmouth College, Hanover, NH 03755, USA
| | - Jaime de Juan-Sanz
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
7
|
Porfetye AT, Stege P, Rebollido-Rios R, Hoffmann D, Schrader T, Vetter IR. How Do Molecular Tweezers Bind to Proteins? Lessons from X-ray Crystallography. Molecules 2024; 29:1764. [PMID: 38675584 PMCID: PMC11051928 DOI: 10.3390/molecules29081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.
Collapse
Affiliation(s)
- Arthur T. Porfetye
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Patricia Stege
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Rocio Rebollido-Rios
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Hoffmann
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| |
Collapse
|
8
|
Miyazaki Y, Otsuka T, Yamagata Y, Endo T, Sanbo M, Sano H, Kobayashi K, Inahashi H, Kornau HC, Schmitz D, Prüss H, Meijer D, Hirabayashi M, Fukata Y, Fukata M. Oligodendrocyte-derived LGI3 and its receptor ADAM23 organize juxtaparanodal Kv1 channel clustering for short-term synaptic plasticity. Cell Rep 2024; 43:113634. [PMID: 38194969 PMCID: PMC10828548 DOI: 10.1016/j.celrep.2023.113634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism, involve altered synaptic transmission and plasticity. Functional characterization of their associated genes is vital for understanding physio-pathological brain functions. LGI3 is a recently recognized ID-associated gene encoding a secretory protein related to an epilepsy-gene product, LGI1. Here, we find that LGI3 is uniquely secreted from oligodendrocytes in the brain and enriched at juxtaparanodes of myelinated axons, forming nanoscale subclusters. Proteomic analysis using epitope-tagged Lgi3 knockin mice shows that LGI3 uses ADAM23 as a receptor and selectively co-assembles with Kv1 channels. A lack of Lgi3 in mice disrupts juxtaparanodal clustering of ADAM23 and Kv1 channels and suppresses Kv1-channel-mediated short-term synaptic plasticity. Collectively, this study identifies an extracellular organizer of juxtaparanodal Kv1 channel clustering for finely tuned synaptic transmission. Given the defective secretion of the LGI3 missense variant, we propose a molecular pathway, the juxtaparanodal LGI3-ADAM23-Kv1 channel, for understanding neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuri Miyazaki
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Otsuka
- Section of Cellular Electrophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yoko Yamagata
- Section of Multilayer Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | | | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiromi Sano
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kenta Kobayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Inahashi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Masumi Hirabayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masaki Fukata
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
9
|
Xing B, Lei Z, Wang Z, Wang Q, Jiang Q, Zhang Z, Liu X, Qi Y, Li S, Guo X, Liu Y, Li X, Shu K, Zhang H, Bartsch JW, Nimsky C, Huang Y, Lei T. A disintegrin and metalloproteinase 22 activates integrin β1 through its disintegrin domain to promote the progression of pituitary adenoma. Neuro Oncol 2024; 26:137-152. [PMID: 37555799 PMCID: PMC10768997 DOI: 10.1093/neuonc/noad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Approximately 35% of pituitary adenoma (PA) display an aggressive profile, resulting in low surgical total resection rates, high recurrence rates, and worse prognosis. However, the molecular mechanism of PA invasion remains poorly understood. Although "a disintegrin and metalloproteinases" (ADAMs) are associated with the progression of many tumors, there are no reports on ADAM22 in PA. METHODS PA transcriptomics databases and clinical specimens were used to analyze the expression of ADAM22. PA cell lines overexpressing wild-type ADAM22, the point mutation ADAM22, the mutated ADAM22 without disintegrin domain, and knocking down ADAM22 were generated. Cell proliferation/invasion assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, mass spectrometry, Reverse transcription-quantitative real-time PCR, phos-tag SDS-PAGE, and Western blot were performed for function and mechanism research. Nude mice xenograft models and rat prolactinoma orthotopic models were used to validate in vitro findings. RESULTS ADAM22 was significantly overexpressed in PA and could promote the proliferation, migration, and invasion of PA cells. ADAM22 interacted with integrin β1 (ITGB1) and activated FAK/PI3K and FAK/ERK signaling pathways through its disintegrin domain to promote PA progression. ADAM22 was phosphorylated by PKA and recruited 14-3-3, thereby delaying its degradation. ITGB1-targeted inhibitor (anti-itgb1) exerted antitumor effects and synergistic effects in combination with somatostatin analogs or dopamine agonists in treating PA. CONCLUSIONS ADAM22 was upregulated in PA and was able to promote PA proliferation, migration, and invasion by activating ITGB1 signaling. PKA may regulate the degradation of ADAM22 through post-transcriptional modification levels. ITGB1 may be a potential therapeutic target for PA.
Collapse
Affiliation(s)
- Biao Xing
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Zhuowei Lei
- Department of Orthopedics, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Zihan Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Quanji Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojin Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Qi
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Sihan Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Guo
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Yanchao Liu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Jörg Walter Bartsch
- Department of Neurosurgery, Philipps-University Marburg, University Hospital Marburg (UKGM), Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, University Hospital Marburg (UKGM), Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji medical college of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Nosková L, Fukata Y, Stránecký V, Šaligová J, Bodnárová O, Giertlová M, Fukata M, Kmoch S. ADAM22 ethnic-specific variant reducing binding of membrane-associated guanylate kinases causes focal epilepsy and behavioural disorder. Brain Commun 2023; 5:fcad295. [PMID: 37953841 PMCID: PMC10636567 DOI: 10.1093/braincomms/fcad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Pathogenic variants of ADAM22 affecting either its biosynthesis and/or its interactions with either LGI1 and/or PSD-95 have been recently identified in individuals with developmental and epileptic encephalopathy. Here, we describe a girl with seizures, delayed psychomotor development, and behavioural disorder, carrying a homozygous variant in ADAM22 (NM_021723.5:c.2714C > T). The variant has a surprisingly high frequency in the Roma population of the Czech and Slovak Republic, with 11 of 213 (∼5.2%) healthy Roma individuals identified as heterozygous carriers. Structural in silico characterization revealed that the genetic variant encodes the missense variant p.S905F, which localizes to the PDZ-binding motif of ADAM22. Studies in transiently transfected mammalian cells revealed that the variant has no effect on biosynthesis and stability of ADAM22. Rather, protein-protein interaction studies showed that the p.S905F variant specifically impairs ADAM22 binding to PSD-95 and other proteins from a family of membrane-associated guanylate kinases, while it has only minor effect on ADAM22-LGI1 interaction. Our study indicates that a significant proportion of epilepsy in patients of Roma ancestry may be caused by homozygous c.2714C > T variants in ADAM22. The study of this ADAM22 variant highlights a novel pathogenic mechanism of ADAM22 dysfunction and reconfirms an essential role of interaction of ADAM22 with membrane-associated guanylate kinases in seizure protection in humans.
Collapse
Affiliation(s)
- Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, 128 08 Prague 2, Czech Republic
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, 128 08 Prague 2, Czech Republic
| | - Jana Šaligová
- Children's Faculty Hospital, Košice 040 11, Slovakia
| | | | - Mária Giertlová
- Medical Genetics Outpatient Service, Unilabs Slovakia Ltd, Košice 040 01, Slovakia
- Department of Paediatric and Adolescent Medicine, Faculty of Medicine, P.J. Šafárik University,Košice 040 01, Slovak Republic
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, 128 08 Prague 2, Czech Republic
| |
Collapse
|
11
|
Zhou L, Wang K, Xu Y, Dong BB, Wu DC, Wang ZX, Wang XT, Cai XY, Yang JT, Zheng R, Chen W, Shen Y, Wei JS. A patient-derived mutation of epilepsy-linked LGI1 increases seizure susceptibility through regulating K v1.1. Cell Biosci 2023; 13:34. [PMID: 36804022 PMCID: PMC9940402 DOI: 10.1186/s13578-023-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/04/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Autosomal dominant lateral temporal epilepsy (ADLTE) is an inherited syndrome caused by mutations in the leucine-rich glioma inactivated 1 (LGI1) gene. It is known that functional LGI1 is secreted by excitatory neurons, GABAergic interneurons, and astrocytes, and regulates AMPA-type glutamate receptor-mediated synaptic transmission by binding ADAM22 and ADAM23. However, > 40 LGI1 mutations have been reported in familial ADLTE patients, more than half of which are secretion-defective. How these secretion-defective LGI1 mutations lead to epilepsy is unknown. RESULTS We identified a novel secretion-defective LGI1 mutation from a Chinese ADLTE family, LGI1-W183R. We specifically expressed mutant LGI1W183R in excitatory neurons lacking natural LGI1, and found that this mutation downregulated Kv1.1 activity, led to neuronal hyperexcitability and irregular spiking, and increased epilepsy susceptibility in mice. Further analysis revealed that restoring Kv1.1 in excitatory neurons rescued the defect of spiking capacity, improved epilepsy susceptibility, and prolonged the life-span of mice. CONCLUSIONS These results describe a role of secretion-defective LGI1 in maintaining neuronal excitability and reveal a new mechanism in the pathology of LGI1 mutation-related epilepsy.
Collapse
Affiliation(s)
- Lin Zhou
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Kang Wang
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yuxiang Xu
- grid.256922.80000 0000 9139 560XSchool of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Bin-Bin Dong
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Deng-Chang Wu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Zhao-Xiang Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Tai Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Yu Cai
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Jin-Tao Yang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Rui Zheng
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Jian-She Wei
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Rho-Kinase/ROCK Phosphorylates PSD-93 Downstream of NMDARs to Orchestrate Synaptic Plasticity. Int J Mol Sci 2022; 24:ijms24010404. [PMID: 36613848 PMCID: PMC9820267 DOI: 10.3390/ijms24010404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR)-mediated structural plasticity of dendritic spines plays an important role in synaptic transmission in the brain during learning and memory formation. The Rho family of small GTPase RhoA and its downstream effector Rho-kinase/ROCK are considered as one of the major regulators of synaptic plasticity and dendritic spine formation, including long-term potentiation (LTP). However, the mechanism by which Rho-kinase regulates synaptic plasticity is not yet fully understood. Here, we found that Rho-kinase directly phosphorylated discs large MAGUK scaffold protein 2 (DLG2/PSD-93), a major postsynaptic scaffold protein that connects postsynaptic proteins with NMDARs; an ionotropic glutamate receptor, which plays a critical role in synaptic plasticity. Stimulation of striatal slices with an NMDAR agonist induced Rho-kinase-mediated phosphorylation of PSD-93 at Thr612. We also identified PSD-93-interacting proteins, including DLG4 (PSD-95), NMDARs, synaptic Ras GTPase-activating protein 1 (SynGAP1), ADAM metallopeptidase domain 22 (ADAM22), and leucine-rich glioma-inactivated 1 (LGI1), by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among them, Rho-kinase increased the binding of PSD-93 to PSD-95 and NMDARs. Furthermore, we found that chemical-LTP induced by glycine, which activates NMDARs, increased PSD-93 phosphorylation at Thr612, spine size, and PSD-93 colocalization with PSD-95, while these events were blocked by pretreatment with a Rho-kinase inhibitor. These results indicate that Rho-kinase phosphorylates PSD-93 downstream of NMDARs, and suggest that Rho-kinase mediated phosphorylation of PSD-93 increases the association with PSD-95 and NMDARs to regulate structural synaptic plasticity.
Collapse
|
13
|
Ramirez-Franco J, Debreux K, Extremet J, Maulet Y, Belghazi M, Villard C, Sangiardi M, Youssouf F, El Far L, Lévêque C, Debarnot C, Marchot P, Paneva S, Debanne D, Russier M, Seagar M, Irani SR, El Far O. Patient-derived antibodies reveal the subcellular distribution and heterogeneous interactome of LGI1. Brain 2022; 145:3843-3858. [PMID: 35727946 DOI: 10.1093/brain/awac218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Autoantibodies against leucine-rich glioma-inactivated 1 (LGI1) occur in patients with encephalitis who present with frequent focal seizures and a pattern of amnesia consistent with focal hippocampal damage. To investigate whether the cellular and subcellular distribution of LGI1 may explain the localization of these features, and hence gain broader insights into LGI1's neurobiology, we analysed the detailed localization of LGI1 and the diversity of its protein interactome, in mouse brains using patient-derived recombinant monoclonal LGI1 antibodies. Combined immunofluorescence and mass spectrometry analyses showed that LGI1 is enriched in excitatory and inhibitory synaptic contact sites, most densely within CA3 regions of the hippocampus. LGI1 is secreted in both neuronal somatodendritic and axonal compartments, and occurs in oligodendrocytic, neuro-oligodendrocytic and astro-microglial protein complexes. Proteomic data support the presence of LGI1-Kv1-MAGUK complexes, but did not reveal LGI1 complexes with postsynaptic glutamate receptors. Our results extend our understanding of regional, cellular and subcellular LGI1 expression profiles and reveal novel LGI1-associated complexes, thus providing insights into the complex biology of LGI1 and its relationship to seizures and memory loss.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Kévin Debreux
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Johanna Extremet
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Yves Maulet
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Maya Belghazi
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), PINT, PFNT, 13385 cedex 5 Marseille, France
| | - Claude Villard
- Aix-Marseille University, CNRS, Institute of Neurophysiopathology (INP), PINT, PFNT, 13385 cedex 5 Marseille, France
| | - Marion Sangiardi
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Fahamoe Youssouf
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Lara El Far
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Christian Lévêque
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Claire Debarnot
- Laboratoire 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', CNRS, Aix-Marseille Université, 13288 cedex 09 Marseille, France
| | - Pascale Marchot
- Laboratoire 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', CNRS, Aix-Marseille Université, 13288 cedex 09 Marseille, France
| | - Sofija Paneva
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dominique Debanne
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Michael Russier
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Michael Seagar
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Neurology, Oxford University Hospitals, Oxford, UK
| | - Oussama El Far
- INSERM, Aix-Marseille Université (AMU), UMR 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, 13015 Marseille, France
| |
Collapse
|
14
|
van der Knoop MM, Maroofian R, Fukata Y, van Ierland Y, Karimiani EG, Lehesjoki AE, Muona M, Paetau A, Miyazaki Y, Hirano Y, Selim L, de França M, Fock RA, Beetz C, Ruivenkamp CAL, Eaton AJ, Morneau-Jacob FD, Sagi-Dain L, Shemer-Meiri L, Peleg A, Haddad-Halloun J, Kamphuis DJ, Peeters-Scholte CMPCD, Kurul SH, Horvath R, Lochmüller H, Murphy D, Waldmüller S, Spranger S, Overberg D, Muir AM, Rad A, Vona B, Abdulwahad F, Maddirevula S, Povolotskaya IS, Voinova VY, Gowda VK, Srinivasan VM, Alkuraya FS, Mefford HC, Alfadhel M, Haack TB, Striano P, Severino M, Fukata M, Hilhorst-Hofstee Y, Houlden H. Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy. Brain 2022; 145:2301-2312. [PMID: 35373813 PMCID: PMC9337806 DOI: 10.1093/brain/awac116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.
Collapse
Affiliation(s)
- Marieke M van der Knoop
- Department of Child Neurology, Sophia Children’s Hospital, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yvette van Ierland
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Razavi International Hospital, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George’s University, London SW17 0RE, UK
| | - Anna Elina Lehesjoki
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Mikko Muona
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland,00100 Helsinki, Finland
- Blueprint Genetics, 02150 Espoo, Finland
| | - Anders Paetau
- Department of Pathology, Medicum, University of Helsinki, 00100 Helsinki, Finland
| | - Yuri Miyazaki
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yoko Hirano
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | - Laila Selim
- Division of Neurology and Metabolism, Kasr Al Ainy School of Medicine, Cairo University Children Hospital, Cairo, Egypt
| | - Marina de França
- Department of Morphology and Genetics, Clinical Center of Medical Genetics Federal, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Ambrosio Fock
- Department of Morphology and Genetics, Clinical Center of Medical Genetics Federal, University of São Paulo, São Paulo, Brazil
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Alison J Eaton
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | | - Lena Sagi-Dain
- Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Genetics Institute, Carmel Medical Center,Haifa, Israel
| | | | - Amir Peleg
- Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Genetics Institute, Carmel Medical Center,Haifa, Israel
| | - Jumana Haddad-Halloun
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Daan J Kamphuis
- Department of Neurology, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | | | - Semra Hiz Kurul
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stephan Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | | | - David Overberg
- Department of Pediatrics, Klinikum Bremen-Mitte, Bremen 28205, Germany
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
| | - Aboulfazl Rad
- Department of Otolaryngology - Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Barbara Vona
- Department of Otolaryngology - Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Firdous Abdulwahad
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Victoria Y Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
- Mental Health Research Center, Moscow 107076, Russia
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
| | - Majid Alfadhel
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yvonne Hilhorst-Hofstee
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|