1
|
Pan K, Gao Y, Zong H, Zhang Y, Qi Y, Wang H, Chen W, Zhou T, Zhao J, Yin T, Guo H, Wang M, Wang H, Pang T, Zang Y, Li J. Neuronal CCL2 responds to hyperglycaemia and contributes to anxiety disorders in the context of diabetes. Nat Metab 2025:10.1038/s42255-025-01281-2. [PMID: 40329008 DOI: 10.1038/s42255-025-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/17/2025] [Indexed: 05/08/2025]
Abstract
Anxiety disorders are frequently observed in patients with diabetes and can be associated with several diabetes-related factors. Here we determine that hyperglycaemia is a major cause for the development of anxiety disorders through a C-C motif chemokine ligand 2 (CCL2)-dependent mechanism. By adopting complementary strategies, we demonstrate that neuron-specific (not peripheral) CCL2 mediates anxiety-like behaviours in streptozotocin-induced diabetic mice. Mechanistically, high glucose levels induce Tonicity-responsive enhancer-binding protein (TonEBP)-dependent CCL2 expression in neurons, leading to microglial activation in a paracrine manner. Similar phenotypes are also observed in high-fat diet-induced diabetic mice, independent of insulin signalling. Furthermore, we reveal that neuronal CCL2 in the medial prefrontal cortex and ventral hippocampus synergistically induces anxiety-like behaviours, indicating brain region-specific effects on diabetic mice. Finally, we confirm that the neuronal TonEBP-CCL2 axis and inflammatory pathways are both upregulated in patients with diabetes. Conclusively, neuronal CCL2 is specifically increased by hyperglycaemia and contributes to anxiety disorders, providing additional insights into the link between diabetes and mental health disorders.
Collapse
Affiliation(s)
- Kaijun Pan
- Metabolic Disease Research Center, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Gao
- Metabolic Disease Research Center, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haichao Zong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongmei Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yingbei Qi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wengang Chen
- Metabolic Disease Research Center, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ting Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinwen Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Yin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haoran Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hanmin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Pang
- Metabolic Disease Research Center, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yi Zang
- Lingang Laboratory, Shanghai, China.
| | - Jia Li
- Metabolic Disease Research Center, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Smith KM, Francisco SG, Zhu Y, LeRoith T, Davis ML, Crott JW, Barger K, Greenberg AS, Smith DE, Taylor A, Yeruva L, Rowan S. Dietary prevention of antibiotic-induced dysbiosis and mortality upon aging in mice. FASEB J 2024; 38:e70241. [PMID: 39655692 PMCID: PMC11629448 DOI: 10.1096/fj.202402262r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Oral antibiotic use is both widespread and frequent in older adults and has been linked to dysbiosis of the gut microbiota, enteric infection, and chronic diseases. Diet and nutrients, particularly prebiotics, may modify the susceptibility of the gut microbiome to antibiotic-induced dysbiosis. We fed 12-month-old mice a high glycemic (HG) or low glycemic (LG) diet with or without antibiotics (ampicillin and neomycin) for an additional 11 months. The glycemic index was modulated by the ratio of rapidly digested amylopectin starch to slowly digested amylose, a type-2-resistant starch. We observed a significant decrease in survival of mice fed a HG diet containing antibiotics (HGAbx) relative to those fed a LG diet containing antibiotics (LGAbx). HGAbx mice died with an enlarged and hemorrhagic cecum, which is associated with colonic hyperplasia and goblet cell depletion. Gut microbiome analysis revealed a pronounced expansion of Proteobacteria and a near-complete loss of Bacteroidota and Firmicutes commensal bacteria in HGAbx, whereas the LGAbx group maintained a population of Bacteroides and more closely resembled the LG microbiome. The predicted functional capacity for bile salt hydrolase activity was lost in HGAbx mice but retained in LGAbx mice. An LG diet containing amylose may therefore be a potential therapeutic to prevent antibiotic-induced dysbiosis and morbidity.
Collapse
Affiliation(s)
- Kelsey M. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Sarah G. Francisco
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Ying Zhu
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Tanya LeRoith
- Department of Biomedical Sciences and PathobiologyVA‐MD College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
| | - Meredith L. Davis
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Jimmy W. Crott
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- Department of Pathology & Laboratory MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Andrew S. Greenberg
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Donald E. Smith
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| | - Laxmi Yeruva
- USDA‐ARS, Microbiome and Metabolism Research UnitArkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Sheldon Rowan
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
- The Friedman School of Nutrition Science & PolicyTufts UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Beekman CN, Penumutchu S, Peterson R, Han G, Belenky M, Hasan MH, Belenky A, Beura LK, Belenky P. Spatial analysis of murine microbiota and bile acid metabolism during amoxicillin treatment. Cell Rep 2024; 43:114572. [PMID: 39116202 DOI: 10.1016/j.celrep.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Antibiotics cause collateral damage to resident microbes that is associated with various health risks. To date, studies have largely focused on the impacts of antibiotics on large intestinal and fecal microbiota. Here, we employ a gastrointestinal (GI) tract-wide integrated multiomic approach to show that amoxicillin (AMX) treatment reduces bacterial abundance, bile salt hydrolase activity, and unconjugated bile acids in the small intestine (SI). Losses of fatty acids (FAs) and increases in acylcarnitines in the large intestine (LI) correspond with spatially distinct expansions of Proteobacteria. Parasutterella excrementihominis engage in FA biosynthesis in the SI, while multiple Klebsiella species employ FA oxidation during expansion in the LI. We subsequently demonstrate that restoration of unconjugated bile acids can mitigate losses of commensals in the LI while also inhibiting the expansion of Proteobacteria during AMX treatment. These results suggest that the depletion of bile acids and lipids may contribute to AMX-induced dysbiosis in the lower GI tract.
Collapse
Affiliation(s)
- Chapman N Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachel Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Marina Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Mohammad H Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Alexei Belenky
- Felicitex Therapeutics Inc., 27 Strathmore Road, Natick, MA 01760, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
4
|
Yu J, Tang H, Zhou N, Wang Z, Huang W, Chen Y, Wang D, Ni J, Lu J, Yao YF. Dietary L-arabinose-induced gut dysbiosis exacerbates Salmonella infection outcome. mSystems 2024; 9:e0052224. [PMID: 38980058 PMCID: PMC11334454 DOI: 10.1128/msystems.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
The gut microbiota is essential for providing colonization resistance against pathogens. Dietary sugars markedly shift the composition of the intestinal microbiota and alter host susceptibility to enteric infections. Here, we demonstrate the effect of L-arabinose on bacterial infection by using a mouse infection model with Salmonella enterica serovar Typhimurium (S. Tm). In the presence of microbiota, L-arabinose induces a dramatic expansion of Enterobacteriaceae, thereby decreasing the microbiota diversity and causing more severe systemic infection. However, L-arabinose supplementation does not alter the disease progression of Salmonella infection in a microbiota-depleted mouse model. More importantly, short-term supplementation of L-arabinose fails to exert anti-diabetic effects in Salmonella-infected hyperglycemia mice and still promotes infection. Overall, our work reveals that a high intake of dietary L-arabinose supports a bloom of Enterobacteriaceae in Salmonella-infected gut, further accelerating the process of systemic infection.IMPORTANCEL-arabinose is a promising natural sweetener and food additive for the regulation of hyperglycemia. Since diabetic subjects are more susceptible to infections, the safety of dietary L-arabinose in diabetic patients experiencing infection remains a concern. Our findings reveal that L-arabinose exacerbates Salmonella infection outcome by inducing gut microbiota dysbiosis in mice. High dietary intake of L-arabinose may be deleterious for diabetic individuals undergoing infection.
Collapse
Affiliation(s)
- Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yana Chen
- Department of Pediatrics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
5
|
Mostafavi Abdolmaleky H, Zhou JR. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants (Basel) 2024; 13:985. [PMID: 39199231 PMCID: PMC11351922 DOI: 10.3390/antiox13080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Schmidt A, von Woedtke T, Weltmann KD, Bekeschus S. YAP/TAZ, beta-catenin, and TGFb pathway activation in medical plasma-induced wound healing in diabetic mice. J Adv Res 2024:S2090-1232(24)00270-4. [PMID: 38986808 DOI: 10.1016/j.jare.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Hippo is a signaling pathway that is evolutionarily conserved and plays critical roles in wound healing and tissue regeneration. Disruption of the transcriptional activity of both Hippo-associated factors, the yes-associated protein (YAP), and the transcriptional co-activator with PDZ binding motif (TAZ) has been associated with cardiovascular diseases, fibrosis, and cancer. This makes the Hippo pathway an appealing target for therapeutic interventions. OBJECTIVES Prior research has indicated that medical gas plasma promotes wound healing by delivering a combination of reactive species directly to the affected areas. However, the involvement of YAP/TAZ and other signaling pathways in diabetic wound healing remains unexplored. METHODS To this extent, ear wounds were generated and treated with gas plasma in streptozotocin (STZ)-induced diabetic mice. Transcriptome profiling at two wound healing stages (days 9 and 20 post-wounding) was performed in female and male mice. Additionally, we employed gene and protein expression analyses, utilizing immunohistological and -chemical staining of various targets as well as quantitative PCR and Western blot analysis. RESULTS Gas plasma treatment accelerated healing by increasing re-epithelialization and modifying extracellular matrix components. Transcriptomic profiling charting the major alterations in gene expression following plasma treatment was followed by a validation of several targets using transcriptional and translational quantification as well as localization analyses. CONCLUSION Our study evaluated the cellular regulation of essential targets of the Hippo and related pathways such as YAP/TAZ, β-catenin, tumor growth factor β, and oxidative stress signaling after plasma treatment. The activation of genes, pathways, and their regulators is an attractive therapeutic aim for a therapeutic intervention in dermal skin repair in diabetic diseases using medical gas plasmas.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
| |
Collapse
|
7
|
Li JH, Zhang M, Zhang ZD, Pan XH, Pan LL, Sun J. GPR41 deficiency aggravates type 1 diabetes in streptozotocin-treated mice by promoting dendritic cell maturation. Acta Pharmacol Sin 2024; 45:1466-1476. [PMID: 38514862 PMCID: PMC11192896 DOI: 10.1038/s41401-024-01242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Disturbances in intestinal immune homeostasis predispose susceptible individuals to type 1 diabetes (T1D). G-protein-coupled receptor 41 (GPR41) is a receptor for short-chain fatty acids (SCFAs) mainly produced by gut microbiota, which plays key roles in maintaining intestinal homeostasis. In this study, we investigated the role of GPR41 in the progression of T1D. In non-obese diabetic (NOD) mice, we found that aberrant reduction of GPR41 expression in the pancreas and colons was associated with the development of T1D. GPR41-deficient (Gpr41-/-) mice displayed significantly exacerbated streptozotocin (STZ)-induced T1D compared to wild-type mice. Furthermore, Gpr41-/- mice showed enhanced gut immune dysregulation and increased migration of gut-primed IFN-γ+ T cells to the pancreas. In bone marrow-derived dendritic cells from Gpr41-/- mice, the expression of suppressor of cytokine signaling 3 (SOCS) was significantly inhibited, while the phosphorylation of STAT3 was significantly increased, thus promoting dendritic cell (DC) maturation. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (BMDC) from Gpr41-/- mice accelerated T1D in irradiated NOD mice. We conclude that GPR41 is essential for maintaining intestinal and pancreatic immune homeostasis and acts as a negative regulator of DC maturation in T1D. GPR41 may be a potential therapeutic target for T1D.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/immunology
- Streptozocin
- Mice, Knockout
- Mice, Inbred NOD
- Mice, Inbred C57BL
- STAT3 Transcription Factor/metabolism
- Suppressor of Cytokine Signaling 3 Protein/metabolism
- Suppressor of Cytokine Signaling 3 Protein/genetics
- Interferon-gamma/metabolism
- Pancreas/metabolism
- Pancreas/pathology
- Pancreas/immunology
- Male
- Female
- Gastrointestinal Microbiome
Collapse
Affiliation(s)
- Jia-Hong Li
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, 214023, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhao-di Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Hua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Long Pan
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Jiangnan University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Jia Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Cho JH, Chae CW, Lim JR, Jung YH, Han SJ, Yoon JH, Park JY, Han HJ. Sodium butyrate ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN expression via inhibiting the RELA-HDAC8 complex. Autophagy 2024; 20:1505-1522. [PMID: 38409852 PMCID: PMC11210903 DOI: 10.1080/15548627.2024.2323785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Damaged mitochondria accumulation in diabetes is one of the main features that contribute to increased incidence of cognitive impairment by inducing apoptosis. Butyrate is a major metabolite produced by microbiota that has neuroprotective effects by regulating mitochondrial function. However, detailed mechanisms underlying how butyrate can regulate neuronal mitophagy remain unclear. Here, we examined the regulatory effects of sodium butyrate (NaB) on high glucose-induced mitophagy dysregulation, neuronal apoptosis, and cognitive impairment and its underlying mechanisms in human-induced pluripotent stem cell-derived neurons, SH-SY5Ys, and streptozotocin (STZ)-induced diabetic mice. In our results, diabetic mice showed gut-microbiota dysbiosis, especially a decreased number of butyrate-producing bacteria and reduced NaB plasma concentration. NaB ameliorated high glucose-induced neuronal mitochondrial dysfunction by recovering PRKN/Parkin-mediated mitophagy. High glucose-induced reactive oxygen species (ROS) and -inhibited PRKAA/AMPKα stimulated the RELA/p65-HDAC8 complex, which downregulated PRKN protein expression by binding to the PRKN promoter region. NaB restored PRKN expression by blocking RELA nuclear translocation and directly inhibiting HDAC8 in the nucleus. In addition, HDAC8 overexpression inhibited the positive effect of NaB on high glucose-induced mitophagy dysfunction and neuronal apoptosis. Oral administration of NaB improved cognitive impairment in diabetic mice by restoring mitophagy in the hippocampus. Taken together, NaB ameliorates neuronal mitophagy through PRKN restoration by inhibiting RELA-HDAC8 complexes, suggesting that NaB is an important substance for protecting neuronal apoptosis in diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Su Jong Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Ortiz-Alvarez de la Campa M, Curtis-Joseph N, Beekman C, Belenky P. Gut Biogeography Accentuates Sex-Related Differences in the Murine Microbiome. Microorganisms 2024; 12:221. [PMID: 38276206 PMCID: PMC10821414 DOI: 10.3390/microorganisms12010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have highlighted the influence of factors such as sex and sex-linked hormones on microbiome composition, raising concerns about the generalizability of findings. Here, we explore whether gut geography, specifically the upper and lower gastrointestinal tract (GI), contributes to sex-linked microbiome differences in mice. We collected microbial samples throughout the length of the GI from male and female C57B6/J mice at 6- and 8-weeks old, and conducted 16S rRNA sequencing. Our findings revealed significant sex-related differences, with Clostridium_sensu_stricto_1 more abundant in the male colon, while females exhibited higher levels of Dubosiella newyorkensis across all organs at 6 weeks. We also observed decreased Shannon alpha diversity in the small intestine compared to the lower GI, and this diversity decreased further at 8 weeks. Interestingly, our results suggest that age mitigates sex-related, but not gut geography-related differences in beta diversity, with implications for experimental outcomes and treatment strategies. This study underscores the dynamic nature of microbial diversity, influenced by sex, age, and GI localization, emphasizing the need for a more comprehensive understanding of microbiome dynamics in experimental research and clinical interventions.
Collapse
Affiliation(s)
| | - Noelle Curtis-Joseph
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Chapman Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Fishbein SRS, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 2023; 21:772-788. [PMID: 37491458 DOI: 10.1038/s41579-023-00933-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
Antibiotic-mediated perturbation of the gut microbiome is associated with numerous infectious and autoimmune diseases of the gastrointestinal tract. Yet, as the gut microbiome is a complex ecological network of microorganisms, the effects of antibiotics can be highly variable. With the advent of multi-omic approaches for systems-level profiling of microbial communities, we are beginning to identify microbiome-intrinsic and microbiome-extrinsic factors that affect microbiome dynamics during antibiotic exposure and subsequent recovery. In this Review, we discuss factors that influence restructuring of the gut microbiome on antibiotic exposure. We present an overview of the currently complex picture of treatment-induced changes to the microbial community and highlight essential considerations for future investigations of antibiotic-specific outcomes. Finally, we provide a synopsis of available strategies to minimize antibiotic-induced damage or to restore the pretreatment architectures of the gut microbial community.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Gai Z, Liao W, Huang Y, Dong Y, Feng H, Han M. Effects of Bifidobacterium BL21 and Lacticaseibacillus LRa05 on gut microbiota in type 2 diabetes mellitus mice. AMB Express 2023; 13:97. [PMID: 37716924 PMCID: PMC10505128 DOI: 10.1186/s13568-023-01603-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
Gut dysbiosis causes damage to the intestinal barrier and is associated with type 2 diabetes mellitus (T2DM). We tested the potential protective effects of probiotic BL21 and LRa05 on gut microbiota in type 2 diabetes mellitus mice and determined whether these effects were related to the modulation of gut microbiota.Thirty specific pathogen-free C57BL/6J mice were randomly allocated to three groups-the (CTL) control group, HFD/STZ model (T2DM) group, and HFD/STZ-probiotic intervention (PRO) group-and intragastrically administered strains BL21 and LRa05 for 11 weeks. The administration of strains BL21 and LRa05 significantly regulated blood glucose levels, accompanied by ameliorated oxidative stress in mice. The BL21/LRa05-treated mice were protected from liver, cecal, and colon damage. Microbiota analysis showed that the cecal and fecal microbiota of the mice presented significantly different spatial distributions from one another. Principal coordinate analysis results indicated that both T2DM and the BL21/LRa05 intervention had significant effects on the cecal contents and fecal microbiota structure. In terms of the fecal microbiota, an abundance of Akkermansia and Anaeroplasma was noted in the PRO group. In terms of the cecal content microbiota, enrichment of Akkermansia, Desulfovibrio, Bifidobacterium, Lactobacillus, and Limosilactobacillus was noted in the PRO group. The probiotics BL21 and LRa05 prevent or ameliorate T2DM by regulating the intestinal flora and reducing inflammation and oxidative stress. Our results suggest that BL21 and LRa05 colonize in the cecum. Thus, BL21/LRa05 combined with probiotics having a strong ability to colonize in the colon may achieve better therapeutic effects in T2DM. Our study illustrated the feasibility and benefits of the combined use of probiotics and implied the importance of intervening at multiple intestinal sites in T2DM mice.
Collapse
Affiliation(s)
- Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, 215200, China
| | - Wenyan Liao
- State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Yue Huang
- Department of Food Science, Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, 215200, China
| | - Huafeng Feng
- Department of Food Science, Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China
| | - Mei Han
- Department of Food Science, Shanghai Business School, 2271# Zhongshanxilu Road, Shanghai, 200235, China.
| |
Collapse
|
12
|
Penumutchu S, Korry BJ, Hewlett K, Belenky P. Fiber supplementation protects from antibiotic-induced gut microbiome dysbiosis by modulating gut redox potential. Nat Commun 2023; 14:5161. [PMID: 37620319 PMCID: PMC10449846 DOI: 10.1038/s41467-023-40553-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Antibiotic-induced gut dysbiosis (AID) is a frequent and serious side effect of antibiotic use and mitigating this dysbiosis is a critical therapeutic target. We propose that the host diet can modulate the chemical environment of the gut resulting in changes to the structure and function of the microbiome during antibiotic treatment. Gut dysbiosis is typically characterized by increases in aerobic respiratory bacterial metabolism, redox potential, and abundance of Proteobacteria. In this study, we explore dietary fiber supplements as potential modulators of the chemical environment in the gut to reduce this pattern of dysbiosis. Using defined-diets and whole-genome sequencing of female murine microbiomes during diet modulation and antibiotic treatment, we find that fiber prebiotics significantly reduced the impact of antibiotic treatment on microbiome composition and function. We observe reduced abundance of aerobic bacteria as well as metabolic pathways associated with oxidative metabolism. These metatranscriptomic results are corroborated by chemical measurements of eH and pH suggesting that fiber dampens the dysbiotic effects of antibiotics. This work indicates that fiber may act as a potential therapeutic for AID by modulating bacterial metabolism in the gut to prevent an increase in redox potential and protect commensal microbes during antibiotic treatment.
Collapse
Affiliation(s)
- Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Katharine Hewlett
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Costa SK, Antosca K, Beekman CN, Peterson RL, Penumutchu S, Belenky P. Short-Term Dietary Intervention with Whole Oats Protects from Antibiotic-Induced Dysbiosis. Microbiol Spectr 2023; 11:e0237623. [PMID: 37439681 PMCID: PMC10434222 DOI: 10.1128/spectrum.02376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Antibiotic-induced gut microbiome dysbiosis (AID) is known to be influenced by host dietary composition. However, how and when diet modulates gut dysbiosis remains poorly characterized. Thus, here, we utilize a multi-omics approach to characterize how a diet supplemented with oats, a rich source of microbiota-accessible carbohydrates, or dextrose impacts amoxicillin-induced changes to gut microbiome structure and transcriptional activity. We demonstrate that oat administration during amoxicillin challenge provides greater protection from AID than the always oats or recovery oats diet groups. In particular, the group in which oats were provided at the time of antibiotic exposure induced the greatest protection against AID while the other oat diets saw greater effects after amoxicillin challenge. The oat diets likewise reduced amoxicillin-driven elimination of Firmicutes compared to the dextrose diet. Functionally, gut communities fed dextrose were carbohydrate starved and favored respiratory metabolism and consequent metabolic stress management while oat-fed communities shifted their transcriptomic profile and emphasized antibiotic stress management. The metabolic trends were exemplified when assessing transcriptional activity of the following two common gut commensal bacteria: Akkermansia muciniphila and Bacteroides thetaiotaomicron. These findings demonstrate that while host diet is important in shaping how antibiotics effect the gut microbiome composition and function, diet timing may play an even greater role in dietary intervention-based therapeutics. IMPORTANCE We utilize a multi-omics approach to demonstrate that diets supplemented with oats, a rich source of microbiota-accessible carbohydrates, are able to confer protection against antibiotic-induced dysbiosis (AID). Our findings affirm that not only is host diet important in shaping antibiotics effects on gut microbiome composition and function but also that the timing of these diets may play an even greater role in managing AID. This work provides a nuanced perspective on dietary intervention against AID and may be informative on preventing AID during routine antibiotic treatment.
Collapse
Affiliation(s)
- Stephen K. Costa
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Katherine Antosca
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Rachel L. Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
14
|
Li X, Jiang X, Qi D, Wang X, Wang C, Fei C, Zhou W, Li J, Zhang K. Effects of ethanamizuril, sulfachlorpyridazine or their combination on cecum microbial community and metabolomics in chickens infected with Eimeria tenella. Microb Pathog 2022; 173:105823. [DOI: 10.1016/j.micpath.2022.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
15
|
Letourneau J, Holmes ZC, Dallow EP, Durand HK, Jiang S, Carrion VM, Gupta SK, Mincey AC, Muehlbauer MJ, Bain JR, David LA. Ecological memory of prior nutrient exposure in the human gut microbiome. THE ISME JOURNAL 2022; 16:2479-2490. [PMID: 35871250 PMCID: PMC9563064 DOI: 10.1038/s41396-022-01292-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 04/20/2023]
Abstract
Many ecosystems have been shown to retain a memory of past conditions, which in turn affects how they respond to future stimuli. In microbial ecosystems, community disturbance has been associated with lasting impacts on microbiome structure. However, whether microbial communities alter their response to repeated stimulus remains incompletely understood. Using the human gut microbiome as a model, we show that bacterial communities retain an "ecological memory" of past carbohydrate exposures. Memory of the prebiotic inulin was encoded within a day of supplementation among a cohort of human study participants. Using in vitro gut microbial models, we demonstrated that the strength of ecological memory scales with nutrient dose and persists for days. We found evidence that memory is seeded by transcriptional changes among primary degraders of inulin within hours of nutrient exposure, and that subsequent changes in the activity and abundance of these taxa are sufficient to enhance overall community nutrient metabolism. We also observed that ecological memory of one carbohydrate species impacts microbiome response to other carbohydrates, and that an individual's habitual exposure to dietary fiber was associated with their gut microbiome's efficiency at digesting inulin. Together, these findings suggest that the human gut microbiome's metabolic potential reflects dietary exposures over preceding days and changes within hours of exposure to a novel nutrient. The dynamics of this ecological memory also highlight the potential for intra-individual microbiome variation to affect the design and interpretation of interventions involving the gut microbiome.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Eric P Dallow
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC, USA
| | - Savita K Gupta
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Adam C Mincey
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - James R Bain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine (Endocrinology), Duke University School of Medicine, Durham, NC, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
16
|
Wurster JI, Peterson RL, Belenky P. Streptozotocin-Induced Hyperglycemia Is Associated with Unique Microbiome Metabolomic Signatures in Response to Ciprofloxacin Treatment. Antibiotics (Basel) 2022; 11:585. [PMID: 35625229 PMCID: PMC9137574 DOI: 10.3390/antibiotics11050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
It is well recognized that the microbiome plays key roles in human health, and that damage to this system by, for example, antibiotic administration has detrimental effects. With this, there is collective recognition that off-target antibiotic susceptibility within the microbiome is a particularly troublesome side effect that has serious impacts on host well-being. Thus, a pressing area of research is the characterization of antibiotic susceptibility determinants within the microbiome, as understanding these mechanisms may inform the development of microbiome-protective therapeutic strategies. In particular, metabolic environment is known to play a key role in the different responses of this microbial community to antibiotics. Here, we explore the role of host dysglycemia on ciprofloxacin susceptibility in the murine cecum. We used a combination of 16S rRNA sequencing and untargeted metabolomics to characterize changes in both microbiome taxonomy and environment. We found that dysglycemia minimally impacted ciprofloxacin-associated changes in microbiome structure. However, from a metabolic perspective, host hyperglycemia was associated with significant changes in respiration, central carbon metabolism, and nucleotide synthesis-related metabolites. Together, these data suggest that host glycemia may influence microbiome function during antibiotic challenge.
Collapse
Affiliation(s)
| | | | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA; (J.I.W.); (R.L.P.)
| |
Collapse
|