1
|
Czopka T, Monk K, Peri F. Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041350. [PMID: 38692835 PMCID: PMC11529855 DOI: 10.1101/cshperspect.a041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kelly Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Bagheri H, Friedman H, Hadwen A, Jarweh C, Cooper E, Oprea L, Guerrier C, Khadra A, Collin A, Cohen‐Adad J, Young A, Victoriano GM, Swire M, Jarjour A, Bechler ME, Pryce RS, Chaurand P, Cougnaud L, Vuckovic D, Wilion E, Greene O, Nishiyama A, Benmamar‐Badel A, Owens T, Grouza V, Tuznik M, Liu H, Rudko DA, Zhang J, Siminovitch KA, Peterson AC. Myelin basic protein mRNA levels affect myelin sheath dimensions, architecture, plasticity, and density of resident glial cells. Glia 2024; 72:1893-1914. [PMID: 39023138 PMCID: PMC11426340 DOI: 10.1002/glia.24589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024]
Abstract
Myelin Basic Protein (MBP) is essential for both elaboration and maintenance of CNS myelin, and its reduced accumulation results in hypomyelination. How different Mbp mRNA levels affect myelin dimensions across the lifespan and how resident glial cells may respond to such changes are unknown. Here, to investigate these questions, we used enhancer-edited mouse lines that accumulate Mbp mRNA levels ranging from 8% to 160% of wild type. In young mice, reduced Mbp mRNA levels resulted in corresponding decreases in Mbp protein accumulation and myelin sheath thickness, confirming the previously demonstrated rate-limiting role of Mbp transcription in the control of initial myelin synthesis. However, despite maintaining lower line specific Mbp mRNA levels into old age, both MBP protein levels and myelin thickness improved or fully normalized at rates defined by the relative Mbp mRNA level. Sheath length, in contrast, was affected only when mRNA levels were very low, demonstrating that sheath thickness and length are not equally coupled to Mbp mRNA level. Striking abnormalities in sheath structure also emerged with reduced mRNA levels. Unexpectedly, an increase in the density of all glial cell types arose in response to reduced Mbp mRNA levels. This investigation extends understanding of the role MBP plays in myelin sheath elaboration, architecture, and plasticity across the mouse lifespan and illuminates a novel axis of glial cell crosstalk.
Collapse
Affiliation(s)
- Hooman Bagheri
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Hana Friedman
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Amanda Hadwen
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Celia Jarweh
- Department of Pharmacology & TherapeuticsMcGill UniversityMontrealQuebecCanada
| | - Ellis Cooper
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Lawrence Oprea
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
| | | | - Anmar Khadra
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
| | - Armand Collin
- Institute of Biomedical Engineering, Ecole Polytechnique de MontrealMontrealQuebecCanada
| | - Julien Cohen‐Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de MontrealMontrealQuebecCanada
| | - Amanda Young
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Gerardo Mendez Victoriano
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Matthew Swire
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andrew Jarjour
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Marie E. Bechler
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Rachel S. Pryce
- Department of ChemistryUniversité de MontréalMontrealQuebecCanada
| | - Pierre Chaurand
- Department of ChemistryUniversité de MontréalMontrealQuebecCanada
| | - Lise Cougnaud
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| | - Elliott Wilion
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Owen Greene
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Akiko Nishiyama
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems Genomics, University of ConnecticutStorrsConnecticutUSA
- The Connecticut Institute for Brain and Cognitive Sciences, University of ConnecticutStorrsConnecticutUSA
| | - Anouk Benmamar‐Badel
- Department of Neurobiology ResearchInstitute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Trevor Owens
- Department of Neurobiology ResearchInstitute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Vladimir Grouza
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Marius Tuznik
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Hanwen Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - David A. Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Jinyi Zhang
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Mount Sinai Hospital, Lunenfeld‐Tanenbaum and Toronto General Hospital Research InstitutesTorontoOntarioCanada
| | - Katherine A. Siminovitch
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Mount Sinai Hospital, Lunenfeld‐Tanenbaum and Toronto General Hospital Research InstitutesTorontoOntarioCanada
| | - Alan C. Peterson
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityQuebecCanada
| |
Collapse
|
3
|
Marshall-Phelps KL, Almeida R. Axonal neurotransmitter release in the regulation of myelination. Biosci Rep 2024; 44:BSR20231616. [PMID: 39230890 PMCID: PMC11427734 DOI: 10.1042/bsr20231616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Myelination of axons is a key determinant of fast action potential propagation, axonal health and circuit function. Previously considered a static structure, it is now clear that myelin is dynamically regulated in response to neuronal activity in the central nervous system (CNS). However, how activity-dependent signals are conveyed to oligodendrocytes remains unclear. Here, we review the potential mechanisms by which neurons could communicate changing activity levels to myelin, with a focus on the accumulating body of evidence to support activity-dependent vesicular signalling directly onto myelin sheaths. We discuss recent in vivo findings of activity-dependent fusion of neurotransmitter vesicles from non-synaptic axonal sites, and how modulation of this vesicular fusion regulates the stability and growth of myelin sheaths. We also consider the potential mechanisms by which myelin could sense and respond to axon-derived signals to initiate remodelling, and the relevance of these adaptations for circuit function. We propose that axonal vesicular signalling represents an important and underappreciated mode of communication by which neurons can transmit activity-regulated signals to myelinating oligodendrocytes and, potentially, more broadly to other cell types in the CNS.
Collapse
Affiliation(s)
- Katy L.H. Marshall-Phelps
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
4
|
Osso LA, Hughes EG. Dynamics of mature myelin. Nat Neurosci 2024; 27:1449-1461. [PMID: 38773349 PMCID: PMC11515933 DOI: 10.1038/s41593-024-01642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.
Collapse
Affiliation(s)
- Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
5
|
Bekku Y, Zotter B, You C, Piehler J, Leonard WJ, Salzer JL. Glia trigger endocytic clearance of axonal proteins to promote rodent myelination. Dev Cell 2024; 59:627-644.e10. [PMID: 38309265 PMCID: PMC11089820 DOI: 10.1016/j.devcel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Axons undergo striking changes in their content and distribution of cell adhesion molecules (CAMs) and ion channels during myelination that underlies the switch from continuous to saltatory conduction. These changes include the removal of a large cohort of uniformly distributed CAMs that mediate initial axon-Schwann cell interactions and their replacement by a subset of CAMs that mediate domain-specific interactions of myelinated fibers. Here, using rodent models, we examine the mechanisms and significance of this removal of axonal CAMs. We show that Schwann cells just prior to myelination locally activate clathrin-mediated endocytosis (CME) in axons, thereby driving clearance of a broad array of axonal CAMs. CAMs engineered to resist endocytosis are persistently expressed along the axon and delay both PNS and CNS myelination. Thus, glia non-autonomously activate CME in axons to downregulate axonal CAMs and presumptively axo-glial adhesion. This promotes the transition from ensheathment to myelination while simultaneously sculpting the formation of axonal domains.
Collapse
Affiliation(s)
- Yoko Bekku
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Brendan Zotter
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - James L Salzer
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
6
|
Pinatel D, Pearlstein E, Bonetto G, Goutebroze L, Karagogeos D, Crepel V, Faivre-Sarrailh C. A class-specific effect of dysmyelination on the excitability of hippocampal interneurons. eLife 2023; 12:e86469. [PMID: 37843188 PMCID: PMC10617988 DOI: 10.7554/elife.86469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023] Open
Abstract
The role of myelination for axonal conduction is well-established in projection neurons but little is known about its significance in GABAergic interneurons. Myelination is discontinuous along interneuron axons and the mechanisms controlling myelin patterning and segregation of ion channels at the nodes of Ranvier have not been elucidated. Protein 4.1B is implicated in the organization of the nodes of Ranvier as a linker between paranodal and juxtaparanodal membrane proteins to the spectrin cytoskeleton. In the present study, 4.1B KO mice are used as a genetic model to analyze the functional role of myelin in Lhx6-positive parvalbumin (PV) and somatostatin (SST) neurons, two major classes of GABAergic neurons in the hippocampus. We show that 4.1B-deficiency induces disruption of juxtaparanodal K+ channel clustering and mislocalization of nodal or heminodal Na+ channels. Strikingly, 4.1B-deficiency causes loss of myelin in GABAergic axons in the hippocampus. In particular, stratum oriens SST cells display severe axonal dysmyelination and a reduced excitability. This reduced excitability is associated with a decrease in occurrence probability of small amplitude synaptic inhibitory events on pyramidal cells. In contrast, stratum pyramidale fast-spiking PV cells do not appear affected. In conclusion, our results indicate a class-specific effect of dysmyelination on the excitability of hippocampal interneurons associated with a functional alteration of inhibitory drive.
Collapse
Affiliation(s)
| | | | | | - Laurence Goutebroze
- INSERM, Institut du Fer à Moulin, Sorbonne Université, Faculté des Sciences et IngénierieParisFrance
| | - Domna Karagogeos
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of CreteHeraklionGreece
| | | | | |
Collapse
|
7
|
Appeltshauser L, Doppler K. Pan-Neurofascin autoimmune nodopathy - a life-threatening, but reversible neuropathy. Curr Opin Neurol 2023; 36:394-401. [PMID: 37639464 DOI: 10.1097/wco.0000000000001195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Autoimmune nodopathies are immune-mediated neuropathies associated with antibodies targeting the peripheral node of Ranvier. Recently, antibodies against all neurofascin-isoforms (pan-neurofascin) have been linked to a clinical phenotype distinct from previously described autoimmune nodopathies. Here, we aim at highlighting the molecular background and the red flags for diagnostic assessment and provide treatment and surveillance approaches for this new disease. RECENT FINDINGS Neurofascin-isoforms are located at different compartments of the node of Ranvier: Neurofascin-186 at the axonal nodal gap, and Neurofascin-155 at the terminal Schwann cell loops at the paranode. Pan-neurofascin antibodies recognize a common epitope on both isoforms and can access the node of Ranvier directly. Depending on their subclass profile, antibodies can induce direct structural disorganization and complement activation. Affected patients present with acute and immobilizing sensorimotor neuropathy, with cranial nerve involvement and long-term respiratory insufficiency. Early antibody-depleting therapy is crucial to avoid axonal damage, and remission is possible despite extended disease and high mortality. The antibody titer and serum neurofilament light chain levels can serve as biomarkers for diagnosis and therapy monitoring. SUMMARY Pan-neurofascin-associated autoimmune nodopathies has unique molecular and clinical features. Testing should be considered in severe and prolonged Guillain-Barré-like phenotype.
Collapse
Affiliation(s)
- Luise Appeltshauser
- Department of Neurology, University Hospital Würzburg (UKW), Würzburg, Germany
| | | |
Collapse
|
8
|
Xiao Y, Petrucco L, Hoodless LJ, Portugues R, Czopka T. Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nat Neurosci 2022; 25:280-284. [PMID: 35241802 PMCID: PMC8904260 DOI: 10.1038/s41593-022-01023-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/25/2022] [Indexed: 12/29/2022]
Abstract
Many oligodendrocyte precursor cells (OPCs) do not differentiate to form myelin, suggesting additional roles of this cell population. The zebrafish optic tectum contains OPCs in regions devoid of myelin. Elimination of these OPCs impaired precise control of retinal ganglion cell axon arbor size during formation and maturation of retinotectal connectivity and degraded functional processing of visual stimuli. Therefore, OPCs fine-tune neural circuits independently of their canonical role to make myelin.
Collapse
Affiliation(s)
- Yan Xiao
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Luigi Petrucco
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Martinsried, Germany
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Laura J Hoodless
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Martinsried, Germany
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|