1
|
Chen F, Li S, Liu M, Qian C, Shang Z, Song X, Jiang W, Tu C. Targeting BRD4 mitigates hepatocellular lipotoxicity by suppressing the NLRP3 inflammasome activation and GSDMD-mediated hepatocyte pyroptosis. Cell Mol Life Sci 2024; 81:295. [PMID: 38977508 PMCID: PMC11335218 DOI: 10.1007/s00018-024-05328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Nod-like receptor family pyrin-containing protein 3 (NLRP3) inflammasome plays a pathologic role in metabolic dysfunction-associated steatohepatitis (MASH), but the molecular mechanism regulating the NLRP3 inflammasome activation in hepatocellular lipotoxicity remains largely unknown. Bromodomain-containing protein 4 (BRD4) has emerged as a key epigenetic reader of acetylated lysine residues in enhancer regions that control the transcription of key genes. The aim of this study is to investigate if and how BRD4 regulated the NLRP3 inflammasome activation and pyroptosis in MASH. Using the AML12 and primary mouse hepatocytes stimulated by palmitic acid (PA) as an in vitro model of hepatocellular lipotoxicity, we found that targeting BRD4 by genetic knockdown or a selective BRD4 inhibitor MS417 protected against hepatosteatosis; and this protective effect was attributed to inhibiting the activation of NLRP3 inflammasome and reducing the expression of Caspase-1, gasdermin D (GSDMD), interleukin (IL)-1β and IL-6. Moreover, BRD4 inhibition limited the voltage-dependent anion channel-1 (VDAC1) expression and oligomerization in PA-treated AML12 hepatocytes, thereby suppressing the NLRP3 inflammasome activation. Additionally, the expression of BRD4 enhanced in MASH livers of humans. Mechanistically, BRD4 was upregulated during hepatocellular lipotoxicity that in turn modulated the active epigenetic mark H3K27ac at the promoter regions of the Vdac and Gsdmd genes, thereby enhancing the expression of VDAC and GSDMD. Altogether, our data provide novel insights into epigenetic mechanisms underlying BRD4 activating the NLRP3 inflammasome and promoting GSDMD-mediated pyroptosis in hepatocellular lipotoxicity. Thus, BRD4 might serve as a novel therapeutic target for the treatment of MASH.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Liu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Cheng Qian
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyin Shang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wei Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Shanghai, 361015, China.
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Wang Y, Situ X, Cardenas H, Siu E, Alhunayan SA, Keathley R, Tanner E, Wei JJ, Tan Y, Dessai CVP, Cheng JX, Matei D. Preclinical Evaluation of NTX-301, a Novel DNA Hypomethylating Agent in Ovarian Cancer. Clin Cancer Res 2024; 30:1175-1188. [PMID: 38231483 PMCID: PMC10947827 DOI: 10.1158/1078-0432.ccr-23-2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development. EXPERIMENTAL DESIGN The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy. RESULTS Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts. CONCLUSIONS NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.
Collapse
Affiliation(s)
- Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiaolei Situ
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ellie Siu
- Department of Biological Sciences, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL
| | | | - Russell Keathley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL
| | - Edward Tanner
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Yuying Tan
- Department of Physics, Boston University, Boston, MA
| | | | - Ji-Xin Cheng
- Department of Physics, Boston University, Boston, MA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
- Jesse Brown Veteran Affairs Medical Center, Chicago, IL
| |
Collapse
|