1
|
Mróz D, Jagłowska J, Wevers RA, Ziętkiewicz S. CLPB Deficiency, a Mitochondrial Chaperonopathy With Neutropenia and Neurological Presentation. J Inherit Metab Dis 2025; 48:e70025. [PMID: 40194906 PMCID: PMC11975511 DOI: 10.1002/jimd.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Affiliation(s)
- D. Mróz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| | - J. Jagłowska
- Department of Pediatrics, Hematology and OncologyMedical University of GdanskGdanskPoland
| | - R. A. Wevers
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - S. Ziętkiewicz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| |
Collapse
|
2
|
D'Angelo D, Sánchez-Vázquez VH, Cartes-Saavedra B, Vecellio Reane D, Cupo RR, Delgado de la Herran H, Ghirardo G, Shorter J, Wevers RA, Wortmann SB, Perocchi F, Rizzuto R, Raffaello A, Hajnóczky G. Dependence of mitochondrial calcium signalling and dynamics on the disaggregase, CLPB. Nat Commun 2025; 16:2810. [PMID: 40118824 PMCID: PMC11928477 DOI: 10.1038/s41467-025-57641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/25/2025] [Indexed: 03/24/2025] Open
Abstract
Cells utilize protein disaggregases to avoid abnormal protein aggregation that causes many diseases. Among these, caseinolytic peptidase B protein homolog (CLPB) is localized in the mitochondrial intermembrane space and linked to human disease. Upon CLPB loss, MICU1 and MICU2, regulators of the mitochondrial calcium uniporter complex (mtCU), and OPA1, a main mediator of mitochondrial fusion, become insoluble but the functional outcome remains unclear. In this work we demonstrate that CLPB is required to maintain mitochondrial calcium signalling and fusion dynamics. CLPB loss results in altered mtCU composition, interfering with mitochondrial calcium uptake independently of cytosolic calcium and mitochondrial membrane potential. Additionally, OPA1 decreases, and aggregation occurs, accompanied by mitochondrial fragmentation. Disease-associated mutations in the CLPB gene present in skin fibroblasts from patients also display mitochondrial calcium and structural changes. Thus, mtCU and fusion activity are dependent on CLPB, and their impairments might contribute to the disease caused by CLPB variants.
Collapse
Affiliation(s)
- Donato D'Angelo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Víctor H Sánchez-Vázquez
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Benjamín Cartes-Saavedra
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Hilda Delgado de la Herran
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Giorgia Ghirardo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Saskia B Wortmann
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- National Center on Gene Therapy and RNA-Based Drugs, Padua, Italy.
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Myology Center (CIR-Myo), University of Padua, Padua, Italy.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
3
|
Wenta T, Wang G, Van Buren T, Zolkiewski M, Zolkiewska A. Mitochondrial CLPB is a pro-survival factor at the onset of granulocytic differentiation of mouse myeloblastic cells. Apoptosis 2025; 30:334-348. [PMID: 39644357 DOI: 10.1007/s10495-024-02053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Loss-of-function mutations in the CLPB gene lead to congenital neutropenia due to impaired neutrophil differentiation. CLPB, a member of the AAA+ family of proteins, resides in the intermembrane space of mitochondria. The mechanism by which a loss of CLPB elicits defects in the differentiation program of neutrophil precursor cells is not understood. Here, we used 32D clone 3 (32Dcl3) cells, an interleukin-3 (IL-3)-dependent mouse myeloblastic cell line model, to investigate the effects of CLPB knockout on myeloblast-to-neutrophil differentiation in vitro. We found that CLPB-deficient 32Dcl3 cells showed a decreased mitochondrial membrane potential and increased levels of insoluble HAX1 aggregates in mitochondria, as compared to control cells. Despite those abnormalities, CLPB loss did not affect cell proliferation rates in the presence of IL-3 but it increased apoptosis after IL-3 withdrawal and simultaneous induction of cell differentiation with granulocytic colony stimulating factor (G-CSF). CLPB-deficient cells that survived the stress associated with IL-3 withdrawal/G-CSF treatment expressed the same levels of differentiation markers as control cells. Moreover, we found that increased apoptosis of CLPB-deficient cells is linked to production of reactive oxygen species (ROS). N-acetylcysteine, exogenous free fatty acids, or exogenous citrate protected CLPB-deficient 32Dcl3 cells from apoptosis at the onset of differentiation. The protective effect of citrate was abolished by inhibition of ATP-citrate lyase (ACLY), an enzyme that converts cytosolic citrate into acetyl-CoA, a substrate for protein acetylation. We propose that citrate supplementation may help mitigate the effects of CLPB loss by facilitating ACLY-dependent ROS detoxification in granulocytic precursor cells.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Guanpeng Wang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
- Department of Immunology & Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Tessa Van Buren
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
4
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. Cell Rep 2024; 43:115005. [PMID: 39671291 PMCID: PMC11815640 DOI: 10.1016/j.celrep.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can (1) reduce Hsp70 collaboration without enhancing activity, (2) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s, (3) produce Hsp70-independent potentiated variants, or (4) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting an NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS and TDP-43 proteinopathies in human cells. Thus, we establish design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
6
|
Bohl V, Hollmann NM, Melzer T, Katikaridis P, Meins L, Simon B, Flemming D, Sinning I, Hennig J, Mogk A. The Listeria monocytogenes persistence factor ClpL is a potent stand-alone disaggregase. eLife 2024; 12:RP92746. [PMID: 38598269 PMCID: PMC11006417 DOI: 10.7554/elife.92746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.
Collapse
Affiliation(s)
- Valentin Bohl
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Nele Merret Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Tobias Melzer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Lena Meins
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
- Chair of Biochemistry IV, Biophysical Chemistry, University of BayreuthBayreuthGermany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| |
Collapse
|
7
|
Baker MJ, Blau KU, Anderson AJ, Palmer CS, Fielden LF, Crameri JJ, Milenkovic D, Thorburn DR, Frazier AE, Langer T, Stojanovski D. CLPB disaggregase dysfunction impacts the functional integrity of the proteolytic SPY complex. J Cell Biol 2024; 223:e202305087. [PMID: 38270563 PMCID: PMC10818064 DOI: 10.1083/jcb.202305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
CLPB is a mitochondrial intermembrane space AAA+ domain-containing disaggregase. CLPB mutations are associated with 3-methylglutaconic aciduria and neutropenia; however, the molecular mechanism underscoring disease and the contribution of CLPB substrates to disease pathology remains unknown. Interactions between CLPB and mitochondrial quality control (QC) factors, including PARL and OPA1, have been reported, hinting at dysregulation of organelle QC in disease. Utilizing proteomic and biochemical approaches, we show a stress-specific aggregation phenotype in a CLPB-null environment and define the CLPB substrate profile. We illustrate an interplay between intermembrane space proteins including CLPB, HAX1, HTRA2, and the inner membrane quality control proteins (STOML2, PARL, YME1L1; SPY complex), with CLPB deficiency impeding SPY complex function by virtue of protein aggregation in the intermembrane space. We conclude that there is an interdependency of mitochondrial QC components at the intermembrane space/inner membrane interface, and perturbations to this network may underscore CLPB disease pathology.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Kai Uwe Blau
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Alexander J. Anderson
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Catherine S. Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Laura F. Fielden
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Dusanka Milenkovic
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - David R. Thorburn
- Royal Children’s Hospital and Department of Paediatrics, Murdoch Children’s Research Institute, The University of Melbourne, Parkville, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, Australia
| | - Ann E. Frazier
- Royal Children’s Hospital and Department of Paediatrics, Murdoch Children’s Research Institute, The University of Melbourne, Parkville, Australia
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
8
|
Darouich S, Darouich S, Gtari D, Bellamine H. CLPB Deficiency Associated Neonatal Cavitating Leukoencephalopathy: A Potential Pathomechanism Underlying Neurologic Disorder. Pediatr Dev Pathol 2024; 27:198-204. [PMID: 37903135 DOI: 10.1177/10935266231204785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Caseinolytic peptidase B homolog (CLPB) is a mitochondrial protein which is highly expressed in brain. Its deficiency may be associated with severe neonatal encephalopathy. This report describes a case of fatal neonatal encephalopathy associated with biallelic stop-gain mutation in CLPB (NM_001258392.3:c.1159C>T/p.Arg387*). Neurologic disorder encompasses pre- and post-natal features including polyhydramnios, intrauterine growth restriction, respiratory insufficiency, lethargy, excessive startle reflex, generalized hypertonia, and epileptic seizures. Brain macroscopic examination demonstrates frontal severe periventricular cystic leukoencephalopathy, along with mild ex-vacuo tri-ventricular dilatation. The most striking immunohistopathologic features are striato-thalamic neurodegeneration and deep white matter loss associated with strong reactive astrogliosis. This report supports that CLPB deficiency should be considered among the neurometabolic disorders associated with severe prenatal-onset neurologic impairment that may result from cystic leukoencephalopathy.
Collapse
Affiliation(s)
- Sihem Darouich
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Samia Darouich
- Institut Supérieur des Sciences Humaines de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Dorsaf Gtari
- Département d'Anatomie et Cytologie pathologiques, Hôpital Menzel Bourguiba, Menzel Bourguiba, Tunisia
| | - Houda Bellamine
- Département d'Anatomie et Cytologie pathologiques, Hôpital Menzel Bourguiba, Menzel Bourguiba, Tunisia
| |
Collapse
|
9
|
Gupta A, Lentzsch AM, Siegel A, Yu Z, Chio US, Cheng Y, Shan SO. Dodecamer assembly of a metazoan AAA + chaperone couples substrate extraction to refolding. SCIENCE ADVANCES 2023; 9:eadf5336. [PMID: 37163603 PMCID: PMC10171807 DOI: 10.1126/sciadv.adf5336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Ring-forming AAA+ chaperones solubilize protein aggregates and protect organisms from proteostatic stress. In metazoans, the AAA+ chaperone Skd3 in the mitochondrial intermembrane space (IMS) is critical for human health and efficiently refolds aggregated proteins, but its underlying mechanism is poorly understood. Here, we show that Skd3 harbors both disaggregase and protein refolding activities enabled by distinct assembly states. High-resolution structures of Skd3 hexamers in distinct conformations capture ratchet-like motions that mediate substrate extraction. Unlike previously described disaggregases, Skd3 hexamers further assemble into dodecameric cages in which solubilized substrate proteins can attain near-native states. Skd3 mutants defective in dodecamer assembly retain disaggregase activity but are impaired in client refolding, linking the disaggregase and refolding activities to the hexameric and dodecameric states of Skd3, respectively. We suggest that Skd3 is a combined disaggregase and foldase, and this property is particularly suited to meet the complex proteostatic demands in the mitochondrial IMS.
Collapse
Affiliation(s)
- Arpit Gupta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alfred M. Lentzsch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Lee S, Lee SB, Sung N, Xu WW, Chang C, Kim HE, Catic A, Tsai FTF. Structural basis of impaired disaggregase function in the oxidation-sensitive SKD3 mutant causing 3-methylglutaconic aciduria. Nat Commun 2023; 14:2028. [PMID: 37041140 PMCID: PMC10090083 DOI: 10.1038/s41467-023-37657-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
Mitochondria are critical to cellular and organismal health. To prevent damage, mitochondria have evolved protein quality control machines to survey and maintain the mitochondrial proteome. SKD3, also known as CLPB, is a ring-forming, ATP-fueled protein disaggregase essential for preserving mitochondrial integrity and structure. SKD3 deficiency causes 3-methylglutaconic aciduria type VII (MGCA7) and early death in infants, while mutations in the ATPase domain impair protein disaggregation with the observed loss-of-function correlating with disease severity. How mutations in the non-catalytic N-domain cause disease is unknown. Here, we show that the disease-associated N-domain mutation, Y272C, forms an intramolecular disulfide bond with Cys267 and severely impairs SKD3Y272C function under oxidizing conditions and in living cells. While Cys267 and Tyr272 are found in all SKD3 isoforms, isoform-1 features an additional α-helix that may compete with substrate-binding as suggested by crystal structure analyses and in silico modeling, underscoring the importance of the N-domain to SKD3 function.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nuri Sung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wendy W Xu
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA
- Louisiana State University Health New Orleans School of Medicine, New Orleans, LA, 70112, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Francis T F Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Wu D, Liu Y, Dai Y, Wang G, Lu G, Chen Y, Li N, Lin J, Gao N. Comprehensive structural characterization of the human AAA+ disaggregase CLPB in the apo- and substrate-bound states reveals a unique mode of action driven by oligomerization. PLoS Biol 2023; 21:e3001987. [PMID: 36745679 PMCID: PMC9934407 DOI: 10.1371/journal.pbio.3001987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/16/2023] [Accepted: 01/04/2023] [Indexed: 02/07/2023] Open
Abstract
The human AAA+ ATPase CLPB (SKD3) is a protein disaggregase in the mitochondrial intermembrane space (IMS) and functions to promote the solubilization of various mitochondrial proteins. Loss-of-function CLPB mutations are associated with a few human diseases with neutropenia and neurological disorders. Unlike canonical AAA+ proteins, CLPB contains a unique ankyrin repeat domain (ANK) at its N-terminus. How CLPB functions as a disaggregase and the role of its ANK domain are currently unclear. Herein, we report a comprehensive structural characterization of human CLPB in both the apo- and substrate-bound states. CLPB assembles into homo-tetradecamers in apo-state and is remodeled into homo-dodecamers upon substrate binding. Conserved pore-loops (PLs) on the ATPase domains form a spiral staircase to grip and translocate the substrate in a step-size of 2 amino acid residues. The ANK domain is not only responsible for maintaining the higher-order assembly but also essential for the disaggregase activity. Interactome analysis suggests that the ANK domain may directly interact with a variety of mitochondrial substrates. These results reveal unique properties of CLPB as a general disaggregase in mitochondria and highlight its potential as a target for the treatment of various mitochondria-related diseases.
Collapse
Affiliation(s)
- Damu Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhao Dai
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Guopeng Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Guoliang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (JL); (NG)
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- * E-mail: (JL); (NG)
| |
Collapse
|
12
|
Lee G, Kim RS, Lee SB, Lee S, Tsai FT. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Biochem Soc Trans 2022; 50:1725-1736. [PMID: 36454589 PMCID: PMC9784670 DOI: 10.1042/bst20220590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Hsp100 chaperones, also known as Clp proteins, constitute a family of ring-forming ATPases that differ in 3D structure and cellular function from other stress-inducible molecular chaperones. While the vast majority of ATP-dependent molecular chaperones promote the folding of either the nascent chain or a newly imported polypeptide to reach its native conformation, Hsp100 chaperones harness metabolic energy to perform the reverse and facilitate the unfolding of a misfolded polypeptide or protein aggregate. It is now known that inside cells and organelles, different Hsp100 members are involved in rescuing stress-damaged proteins from a previously aggregated state or in recycling polypeptides marked for degradation. Protein degradation is mediated by a barrel-shaped peptidase that physically associates with the Hsp100 hexamer to form a two-component system. Notable examples include the ClpA:ClpP (ClpAP) and ClpX:ClpP (ClpXP) proteases that resemble the ring-forming FtsH and Lon proteases, which unlike ClpAP and ClpXP, feature the ATP-binding and proteolytic domains in a single polypeptide chain. Recent advances in electron cryomicroscopy (cryoEM) together with single-molecule biophysical studies have now provided new mechanistic insight into the structure and function of this remarkable group of macromolecular machines.
Collapse
Affiliation(s)
- Grace Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Rebecca S. Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|