1
|
Chen Y, Bai Y, Deng D, Liu Y, He L, Wang M, Zhou M, Wang X, Yu C, Wang Y, Zhao F, Hai C, Wang B, Liu J, Kong X, Tu X, Li H. Novel LBR pathogenic variants with loss of sterol reductase activity participate in the pathogenesis of skeletal dysplasia via dysregulating canonical Wnt pathway. Biochim Biophys Acta Mol Basis Dis 2025:167901. [PMID: 40355051 DOI: 10.1016/j.bbadis.2025.167901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/15/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Biallelic pathogenic variants in the lamin B receptor (LBR) with impaired sterol reductase function are associated with the development of perinatal lethal Greenberg dysplasia (GRBGD) and mild nonfatal skeletal dysplasia with or without Pelger-Huet anomaly (PHASK), as well as other related hereditary skeletal dysplasia. However, the underlying molecular mechanism remains unclear. In this study, we found two novel pathogenic variants of LBR, namely missense mutation (c.1011 T > G, NM_002296.4; p.Cys337Trp, NP_002287.2) and LBR gene deletion (Chr1q42.12 (225,515,082-225,633,464), NC_000001.10). LBR is a novel substrate of FBW7, which is degraded by GSK3β/FBW7-mediated proteasome pathway and whose C337W mutation promotes its degradation through enhanced interaction with FBW7. Wild-type but not C337W mutant LBR is upregulated by WNT3A-mediated inactivation of GSK3β/FBW7 axis and then participated in WNT3A-activated Wnt pathway through its mediated cholesterol synthesis. MC3T3-E1 cells with Lbr knockdown or cholesterol removal exhibited reduced mineralized nodules in the presence of WNT3A, but addition of cholesterol in the culture medium reversed this phenotype. Collectively, we detected two novel variants in LBR and our study revealed for the first time that disruption of cholesterol synthesis by LBR impairs Wnt pathway and thus disrupts the cell osteogenic differentiation, providing new insights into the pathogenesis of skeletal dysplasia caused by LBR variation.
Collapse
Affiliation(s)
- Yilin Chen
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ying Bai
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Dan Deng
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yiheng Liu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Linyang He
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mengru Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mengchen Zhou
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangyi Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chenguang Yu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yue Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Feifei Zhao
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chengying Hai
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Junyi Liu
- Albany Medical College, New York 12208, USA
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xin Tu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hui Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Merta H, Gov K, Isogai T, Paul B, Sannigrahi A, Radhakrishnan A, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. Cell Rep 2025; 44:115502. [PMID: 40184252 DOI: 10.1016/j.celrep.2025.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/20/2024] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knockin technologies, we map the proteomic landscape of the human ER network. Sub-organelle proteomics reveals enrichments of proteins into ER tubules, sheets, and the nuclear envelope. We uncover an ER-enriched actin-binding protein, calmin/CLMN, and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. Mechanistically, we find that CLMN depletion perturbs adhesion disassembly, actin dynamics, and cell movement. CLMN-depleted cells display decreased polarization of ER-plasma membrane contacts and calcium signaling factor STIM1 and altered calcium signaling near ER-actin interfaces, suggesting that CLMN influences calcium signaling to facilitate F-actin/adhesion dynamics. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kaitlynn Gov
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Achinta Sannigrahi
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Ren Y, Yang J, Saito T, Glomb O, Mousavi SI, Naughton B, de Fontnouvelle C, Fujita B, Schlieker C, Yogev S, Zhang Y, Berro J. Genetically encoded mechano-sensors with versatile readouts and compact size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633409. [PMID: 39868242 PMCID: PMC11760715 DOI: 10.1101/2025.01.16.633409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Mechanical forces are critical for virtually all fundamental biological processes, yet quantification of mechanical forces at the molecular scale in vivo remains challenging. Here, we present a new strategy using calibrated coiled-coils as genetically encoded, compact, tunable, and modular mechano-sensors to substantially simplify force measurement in vivo, via diverse readouts (luminescence, fluorescence and analytical biochemistry) and instrumentation readily available in biology labs. We demonstrate the broad applicability and ease-of-use of these coiled-coil mechano-sensors by measuring forces during cytokinesis (formin Cdc12) and endocytosis (epsin Ent1) in yeast, force distributions in nematode axons (β-spectrin UNC-70), and forces transmitted to the nucleus (mini-nesprin-2G) and within focal adhesions (vinculin) in mammalian cells. We report discoveries in intracellular force transmission that have been elusive to existing tools.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University; West Haven, CT 06516, USA
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Takumi Saito
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University; West Haven, CT 06516, USA
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Oliver Glomb
- Institut für Klinische Anatomie und Zellanalytik, Medizinische Fakultät, Eberhard Karls Universität Tübingen; Österbergstraße 3, 72074 Tübingen, Germany
| | - Sayed Iman Mousavi
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University; West Haven, CT 06516, USA
| | - Brigitte Naughton
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Christina de Fontnouvelle
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University; West Haven, CT 06516, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry; Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University; West Haven, CT 06516, USA
- Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06520, USA
| |
Collapse
|
4
|
Deolal P, Scholz J, Ren K, Bragulat-Teixidor H, Otsuka S. Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle. Nucleus 2024; 15:2299632. [PMID: 38238284 PMCID: PMC10802211 DOI: 10.1080/19491034.2023.2299632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.
Collapse
Affiliation(s)
- Pallavi Deolal
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Scholz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Kaike Ren
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| |
Collapse
|
5
|
Buggiani J, Meinnel T, Giglione C, Frottin F. Advances in nuclear proteostasis of metazoans. Biochimie 2024; 226:148-164. [PMID: 38642824 DOI: 10.1016/j.biochi.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The proteostasis network and associated protein quality control (PQC) mechanisms ensure proteome functionality and are essential for cell survival. A distinctive feature of eukaryotic cells is their high degree of compartmentalization, requiring specific and adapted proteostasis networks for each compartment. The nucleus, essential for maintaining the integrity of genetic information and gene transcription, is one such compartment. While PQC mechanisms have been investigated for decades in the cytoplasm and the endoplasmic reticulum, our knowledge of nuclear PQC pathways is only emerging. Recent developments in the field have underscored the importance of spatially managing aberrant proteins within the nucleus. Upon proteotoxic stress, misfolded proteins and PQC effectors accumulate in various nuclear membrane-less organelles. Beyond bringing together effectors and substrates, the biophysical properties of these organelles allow novel PQC functions. In this review, we explore the specificity of the nuclear compartment, the effectors of the nuclear proteostasis network, and the PQC roles of nuclear membrane-less organelles in metazoans.
Collapse
Affiliation(s)
- Julia Buggiani
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Frottin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Mallik S, Poch D, Burick S, Schlieker C. Protein folding and quality control during nuclear transport. Curr Opin Cell Biol 2024; 90:102407. [PMID: 39142062 DOI: 10.1016/j.ceb.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
The spatial separation of protein synthesis from the compartmental destiny of proteins led to the evolution of transport systems that are efficient and yet highly specific. Co-translational transport has emerged as a strategy to avoid cytosolic aggregation of folding intermediates and the need for energy-consuming unfolding strategies to enable transport through narrow conduits connecting compartments. While translation and compartmental translocation are at times tightly coordinated, we know very little about the temporal coordination of translation, protein folding, and nuclear import. Here, we consider the implications of co-translational engagement of nuclear import machinery. We propose that the dynamic interplay of karyopherins and intrinsically disordered nucleoporins create a favorable protein folding environment for cargo en route to the nuclear compartment while maintaining a barrier function of the nuclear pore complex. Our model is discussed in the context of neurological disorders that are tied to defects in nuclear transport and protein quality control.
Collapse
Affiliation(s)
- Sunanda Mallik
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Dylan Poch
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Sophia Burick
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Christian Schlieker
- Yale University, Department of Molecular Biophysics and Biochemistry, New Haven, CT, USA; Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA.
| |
Collapse
|
7
|
Müller L, Hoppe T. UPS-dependent strategies of protein quality control degradation. Trends Biochem Sci 2024; 49:859-874. [PMID: 38945729 DOI: 10.1016/j.tibs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.
Collapse
Affiliation(s)
- Leonie Müller
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
8
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
9
|
Currie J, Manda V, Robinson SK, Lai C, Agnihotri V, Hidalgo V, Ludwig RW, Zhang K, Pavelka J, Wang ZV, Rhee JW, Lam MPY, Lau E. Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions. Nat Commun 2024; 15:2207. [PMID: 38467653 PMCID: PMC10928085 DOI: 10.1038/s41467-024-46600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The spatial and temporal distributions of proteins are critical to protein function, but cannot be directly assessed by measuring protein bundance. Here we describe a mass spectrometry-based proteomics strategy, Simultaneous Proteome Localization and Turnover (SPLAT), to measure concurrently protein turnover rates and subcellular localization in the same experiment. Applying the method, we find that unfolded protein response (UPR) has different effects on protein turnover dependent on their subcellular location in human AC16 cells, with proteome-wide slowdown but acceleration among stress response proteins in the ER and Golgi. In parallel, UPR triggers broad differential localization of proteins including RNA-binding proteins and amino acid transporters. Moreover, we observe newly synthesized proteins including EGFR that show a differential localization under stress than the existing protein pools, reminiscent of protein trafficking disruptions. We next applied SPLAT to an induced pluripotent stem cell derived cardiomyocyte (iPSC-CM) model of cancer drug cardiotoxicity upon treatment with the proteasome inhibitor carfilzomib. Paradoxically, carfilzomib has little effect on global average protein half-life, but may instead selectively disrupt sarcomere protein homeostasis. This study provides a view into the interactions of protein spatial and temporal dynamics and demonstrates a method to examine protein homeostasis regulations in stress and drug response.
Collapse
Affiliation(s)
- Jordan Currie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Vyshnavi Manda
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sean K Robinson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Celine Lai
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Vertica Agnihotri
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, CA, 91010, Duarte, USA
| | - Veronica Hidalgo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - R W Ludwig
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kai Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jay Pavelka
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Zhao V Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - June-Wha Rhee
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, CA, 91010, Duarte, USA
| | - Maggie P Y Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Riepe C, Wąchalska M, Deol KK, Amaya AK, Porteus MH, Olzmann JA, Kopito RR. Small-molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states. Mol Biol Cell 2024; 35:ar15. [PMID: 38019608 PMCID: PMC10881158 DOI: 10.1091/mbc.e23-08-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small-molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase and demonstrated that CFTR-F508del ERAD is robust. Gene-drug interaction experiments illustrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.
Collapse
Affiliation(s)
- Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University, Stanford, CA 94305
| | | | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
11
|
Merta H, Isogai T, Paul B, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577043. [PMID: 38328045 PMCID: PMC10849733 DOI: 10.1101/2024.01.24.577043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knock-in technologies, here we map the proteomic landscape of the human ER and nuclear envelope. Spatial proteomics reveals enrichments of proteins into ER tubules, sheets, and nuclear envelope. We uncover an ER-enriched actin-binding protein, Calmin (CLMN), and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. CLMN depletion perturbs focal adhesion disassembly, actin dynamics, and cell movement. Mechanistically, CLMN-depleted cells also exhibit defects in calcium signaling near ER-actin interfaces, suggesting CLMN promotes calcium signaling near adhesions to facilitate their disassembly. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| |
Collapse
|
12
|
Currie J, Manda V, Robinson SK, Lai C, Agnihotri V, Hidalgo V, Ludwig RW, Zhang K, Pavelka J, Wang ZV, Rhee JW, Lam MPY, Lau E. Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.04.521821. [PMID: 36711879 PMCID: PMC9881985 DOI: 10.1101/2023.01.04.521821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The functions of proteins depend on their spatial and temporal distributions, which are not directly measured by static protein abundance. Under endoplasmic reticulum (ER) stress, the unfolded protein response (UPR) pathway remediates proteostasis in part by altering the turnover kinetics and spatial distribution of proteins. A global view of these spatiotemporal changes has yet to emerge and it is unknown how they affect different cellular compartments and pathways. Here we describe a mass spectrometry-based proteomics strategy and data analysis pipeline, termed Simultaneous Proteome Localization and Turnover (SPLAT), to measure concurrently the changes in protein turnover and subcellular distribution in the same experiment. Investigating two common UPR models of thapsigargin and tunicamycin challenge in human AC16 cells, we find that the changes in protein turnover kinetics during UPR varies across subcellular localizations, with overall slowdown but an acceleration in endoplasmic reticulum and Golgi proteins involved in stress response. In parallel, the spatial proteomics component of the experiment revealed an externalization of amino acid transporters and ion channels under UPR, as well as the migration of RNA-binding proteins toward an endosome co-sedimenting compartment. The SPLAT experimental design classifies heavy and light SILAC labeled proteins separately, allowing the observation of differential localization of new and old protein pools and capturing a partition of newly synthesized EGFR and ITGAV to the ER under stress that suggests protein trafficking disruptions. Finally, application of SPLAT toward human induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) exposed to the cancer drug carfilzomib, identified a selective disruption of proteostasis in sarcomeric proteins as a potential mechanism of carfilzomib-mediated cardiotoxicity. Taken together, this study provides a global view into the spatiotemporal dynamics of human cardiac cells and demonstrates a method for inferring the coordinations between spatial and temporal proteome regulations in stress and drug response.
Collapse
Affiliation(s)
- Jordan Currie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vyshnavi Manda
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sean K. Robinson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Celine Lai
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Vertica Agnihotri
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, Durante, CA 91010, USA
| | - Veronica Hidalgo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - R. W. Ludwig
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kai Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jay Pavelka
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, Durante, CA 91010, USA
| | - Maggie P. Y. Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Turkmen AM, Saik NO, Ullman KS. The dynamic nuclear envelope: resilience in health and dysfunction in disease. Curr Opin Cell Biol 2023; 85:102230. [PMID: 37660480 PMCID: PMC10843620 DOI: 10.1016/j.ceb.2023.102230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
The canonical appearance of the nucleus depends on constant adaptation and remodeling of the nuclear envelope in response to changing biomechanical forces and metabolic demands. Dynamic events at the nuclear envelope play a vital role in supporting key nuclear functions as well as conferring plasticity to this organelle. Moreover, imbalance of these dynamic processes is emerging as a central feature of disease etiology. This review focuses on recent advances that shed light on the myriad events at the nuclear envelope that contribute to resilience and flexibility in nuclear architecture.
Collapse
Affiliation(s)
- Ayse M Turkmen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Natasha O Saik
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BMC Genomics 2023; 24:651. [PMID: 37904134 PMCID: PMC10614335 DOI: 10.1186/s12864-023-09754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute Freeman Hrabowski Scholar, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
16
|
Riepe C, Wąchalska M, Deol KK, Amaya AK, Porteus MH, Olzmann JA, Kopito RR. Small molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.556420. [PMID: 37745470 PMCID: PMC10515913 DOI: 10.1101/2023.09.15.556420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase, demonstrating that CFTR-F508del ERAD is highly buffered. Gene-drug interaction experiments demonstrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.
Collapse
Affiliation(s)
- Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University, Stanford, CA, USA 94305
| | | | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| |
Collapse
|
17
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525086. [PMID: 36711738 PMCID: PMC9882262 DOI: 10.1101/2023.01.22.525086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA,02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| |
Collapse
|