1
|
Costa C, Sirard JC, Gibson PS, Veening JW, Gjini E, Baldry M. Triggering Toll-Like Receptor 5 Signaling During Pneumococcal Superinfection Prevents the Selection of Antibiotic Resistance. J Infect Dis 2024; 230:e1126-e1135. [PMID: 38716762 PMCID: PMC11566229 DOI: 10.1093/infdis/jiae239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 11/16/2024] Open
Abstract
Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin (AMX) improves the treatment of primary pneumonia or superinfection caused by AMX-sensitive or AMX-resistant Streptococcus pneumoniae. Here, the impact of adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated using superinfection with isogenic antibiotic-sensitive and antibiotic-resistant bacteria and population dynamics analysis. Our findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the antibiotic monotherapy. A mathematical model was developed that captured the population dynamics and estimated a 20-fold enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed therapy and refinement of treatment by modeling.
Collapse
Affiliation(s)
- Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
2
|
Hiller NL, Orihuela CJ. Biological puzzles solved by using Streptococcus pneumoniae: a historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J Bacteriol 2024; 206:e0005924. [PMID: 38809015 PMCID: PMC11332154 DOI: 10.1128/jb.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Brissac T, Guyonnet C, Sadouni A, Hernández-Montoya A, Jacquemet E, Legendre R, Sismeiro O, Trieu-Cuot P, Lanotte P, Tazi A, Firon A. Coordinated regulation of osmotic imbalance by c-di-AMP shapes ß-lactam tolerance in Group B Streptococcus. MICROLIFE 2024; 5:uqae014. [PMID: 38993744 PMCID: PMC11238645 DOI: 10.1093/femsml/uqae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Streptococcus agalactiae is among the few pathogens that have not developed resistance to ß-lactam antibiotics despite decades of clinical use. The molecular basis of this long-lasting susceptibility has not been investigated, and it is not known whether specific mechanisms constrain the emergence of resistance. In this study, we first report ß-lactam tolerance due to the inactivation of the c-di-AMP phosphodiesterase GdpP. Mechanistically, tolerance depends on antagonistic regulation by the repressor BusR, which is activated by c-di-AMP and negatively regulates ß-lactam susceptibility through the BusAB osmolyte transporter and the AmaP/Asp23/GlsB cell envelope stress complex. The BusR transcriptional response is synergistic with the simultaneous allosteric inhibition of potassium and osmolyte transporters by c-di-AMP, which individually contribute to low-level ß-lactam tolerance. Genome-wide transposon mutagenesis confirms the role of GdpP and highlights functional interactions between a lysozyme-like hydrolase, the KhpAB RNA chaperone and the protein S immunomodulator in the response of GBS to ß-lactam. Overall, we demonstrate that c-di-AMP acts as a turgor pressure rheostat, coordinating an integrated response at the transcriptional and post-translational levels to cell wall weakening caused by ß-lactam activity, and reveal additional mechanisms that could foster resistance.
Collapse
Affiliation(s)
- Terry Brissac
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Cécile Guyonnet
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, 75015, Paris, France
- Department of Bacteriology, French National Reference Center for Streptococci, Assistance Publique-Hôpitaux de Paris Hôpitaux Universitaires Paris Centre, Hôpital Cochin, 75005, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, 75005, Paris, France
| | - Aymane Sadouni
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Ariadna Hernández-Montoya
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Elise Jacquemet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Odile Sismeiro
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Patrick Trieu-Cuot
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Philippe Lanotte
- Université de Tours, INRAE, UMR 1282 ISP, 3700, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie, 37044, Tours, France
| | - Asmaa Tazi
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, 75015, Paris, France
- Department of Bacteriology, French National Reference Center for Streptococci, Assistance Publique-Hôpitaux de Paris Hôpitaux Universitaires Paris Centre, Hôpital Cochin, 75005, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, 75005, Paris, France
| | - Arnaud Firon
- Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| |
Collapse
|
4
|
Qi W, Jonker MJ, Katsavelis D, de Leeuw W, Wortel M, Ter Kuile BH. The Effect of the Stringent Response and Oxidative Stress Response on Fitness Costs of De Novo Acquisition of Antibiotic Resistance. Int J Mol Sci 2024; 25:2582. [PMID: 38473832 DOI: 10.3390/ijms25052582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Resistance evolution during exposure to non-lethal levels of antibiotics is influenced by various stress responses of bacteria which are known to affect growth rate. Here, we aim to disentangle how the interplay between resistance development and associated fitness costs is affected by stress responses. We performed de novo resistance evolution of wild-type strains and single-gene knockout strains in stress response pathways using four different antibiotics. Throughout resistance development, the increase in minimum inhibitory concentration (MIC) is accompanied by a gradual decrease in growth rate, most pronounced in amoxicillin or kanamycin. By measuring biomass yield on glucose and whole-genome sequences at intermediate and final time points, we identified two patterns of how the stress responses affect the correlation between MIC and growth rate. First, single-gene knockout E. coli strains associated with reactive oxygen species (ROS) acquire resistance faster, and mutations related to antibiotic permeability and pumping out occur earlier. This increases the metabolic burden of resistant bacteria. Second, the ΔrelA knockout strain, which has reduced (p)ppGpp synthesis, is restricted in its stringent response, leading to diminished growth rates. The ROS-related mutagenesis and the stringent response increase metabolic burdens during resistance development, causing lower growth rates and higher fitness costs.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Drosos Katsavelis
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike Wortel
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Johnson CN, Wilde S, Tuomanen E, Rosch JW. Convergent impact of vaccination and antibiotic pressures on pneumococcal populations. Cell Chem Biol 2024; 31:195-206. [PMID: 38052216 PMCID: PMC10938186 DOI: 10.1016/j.chembiol.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Streptococcus pneumoniae is a remarkably adaptable and successful human pathogen, playing dual roles of both asymptomatic carriage in the nasopharynx and invasive disease including pneumonia, bacteremia, and meningitis. Efficacious vaccines and effective antibiotic therapies are critical to mitigating morbidity and mortality. However, clinical interventions can be rapidly circumvented by the pneumococcus by its inherent proclivity for genetic exchange. This leads to an underappreciated interplay between vaccine and antibiotic pressures on pneumococcal populations. Circulating populations have undergone dramatic shifts due to the introduction of capsule-based vaccines of increasing valency imparting strong selective pressures. These alterations in population structure have concurrent consequences on the frequency of antibiotic resistance profiles in the population. This review will discuss the interactions of these two selective forces. Understanding and forecasting the drivers of antibiotic resistance and capsule switching are of critical importance for public health, particularly for such a genetically promiscuous pathogen as S. pneumoniae.
Collapse
Affiliation(s)
- Cydney N Johnson
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shyra Wilde
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elaine Tuomanen
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jason W Rosch
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|