1
|
Wang R, Roiuk M, Storer F, Teleman AA, Amoyel M. Signals from the niche promote distinct modes of translation initiation to control stem cell differentiation and renewal in the Drosophila testis. PLoS Biol 2025; 23:e3003049. [PMID: 40067813 DOI: 10.1371/journal.pbio.3003049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2025] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Stem cells have the unique ability among adult cells to give rise to cells of different identities. To do so, they must change gene expression in response to environmental signals. Much work has focused on how transcription is regulated to achieve these changes; however, in many cell types, transcripts and proteins correlate poorly, indicating that post-transcriptional regulation is important. To assess how translational control can influence stem cell fate, we use the Drosophila testis as a model. The testis niche secretes a ligand to activate the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in two stem cell populations, germline stem cells (GSCs) and somatic cyst stem cells (CySCs). We find that global translation rates are high in CySCs and decrease during differentiation, and that JAK/STAT signaling regulates translation. To determine how translation was regulated, we knocked down translation initiation factors and found that the cap binding complex, eIF4F, is dispensable in differentiating cells, but is specifically required in CySCs for self-renewal, acting downstream of JAK/STAT activity. Moreover, we identify eIF3d1 as a key regulator of CySC fate, and show that two eIF3d1 residues subject to regulation by phosphorylation are critical to maintain CySC self-renewal. We further show that Casein Kinase II (CkII), which controls eIF3d1 phosphorylation, influences the binding of eIF3d and eIF4F in mammalian cells, and that CkII expression is sufficient to restore CySC function in the absence of JAK/STAT. We propose a model in which niche signals regulate a specific translation programme in which only some mRNAs are translated. The mechanism we identify allows stem cells to switch between modes of translation, adding a layer of regulation on top of transcription and providing cells with the ability to rapidly change gene expression upon receiving external stimuli.
Collapse
Affiliation(s)
- Ruoxu Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mykola Roiuk
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Freya Storer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Perales IE, Jones SD, Duan T, Geyer PK. Maintenance of germline stem cell homeostasis despite severe nuclear distortion. Dev Biol 2024; 515:139-150. [PMID: 39038593 PMCID: PMC11317214 DOI: 10.1016/j.ydbio.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Stem cell loss in aging and disease is associated with nuclear deformation. Yet, how nuclear shape influences stem cell homeostasis is poorly understood. We investigated this connection using Drosophila germline stem cells, as survival of these stem cells is compromised by dysfunction of the nuclear lamina, the extensive protein network that lines the inner nuclear membrane and gives shape to the nucleus. To induce nuclear distortion in germline stem cells, we used the GAL4-UAS system to increase expression of the permanently farnesylated nuclear lamina protein, Kugelkern, a rate limiting factor for nuclear growth. We show that elevated Kugelkern levels cause severe nuclear distortion in germline stem cells, including extensive thickening and lobulation of the nuclear envelope and nuclear lamina, as well as alteration of internal nuclear compartments. Despite these changes, germline stem cell number, proliferation, and female fertility are preserved, even as females age. Collectively, these data demonstrate that disruption of nuclear architecture does not cause a failure of germline stem cell survival or homeostasis, revealing that nuclear deformation does not invariably promote stem cell loss.
Collapse
Affiliation(s)
- Isabella E Perales
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel D Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tingting Duan
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Rosenlehner T, Pennavaria S, Akçabozan B, Jahani S, O'Neill TJ, Krappmann D, Straub T, Kranich J, Obst R. Reciprocal regulation of mTORC1 signaling and ribosomal biosynthesis determines cell cycle progression in activated T cells. Sci Signal 2024; 17:eadi8753. [PMID: 39436996 DOI: 10.1126/scisignal.adi8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Ribosomal biosynthesis in nucleoli is an energy-demanding process driven by all RNA polymerases and hundreds of auxiliary proteins. We investigated how this process is regulated in activated T lymphocytes by T cell receptor (TCR) signals and the multiprotein complexes mTORC1 and mTORC2, both of which contain the kinase mTOR. Deficiency in mTORC1 slowed the proliferation of T cells, with further delays in each consecutive division, an effect not seen with deficiency in mTORC2. mTORC1 signaling was stimulated by components of conventional TCR signaling, and, reciprocally, TCR sensitivity was decreased by mTORC1 inhibition. The substantial increase in the amount of RNA per cell induced by TCR activation was reduced by 50% by deficiency in mTORC1, but not in mTORC2 or in S6 kinases 1 and 2, which are activated downstream of mTORC1. RNA-seq data showed that mTORC1 deficiency reduced the abundance of all RNA biotypes, although rRNA processing was largely intact in activated T cells. Imaging cytometry with FISH probes for nascent pre-rRNA revealed that deletion of mTORC1, but not that of mTORC2, reduced the number and expansion of nucleolar sites of active transcription. Protein translation was consequently decreased by 50% in the absence of mTORC1. Inhibiting RNA polymerase I blocked not only proliferation but also mTORC1 signaling. Our data show that TCR signaling, mTORC1 activity, and ribosomal biosynthesis in the nucleolus regulate each other during biomass production in clonally expanding T cells.
Collapse
Affiliation(s)
- Teresa Rosenlehner
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shiva Jahani
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas J O'Neill
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Samuels TJ, Gui J, Gebert D, Karam Teixeira F. Two distinct waves of transcriptome and translatome changes drive Drosophila germline stem cell differentiation. EMBO J 2024; 43:1591-1617. [PMID: 38480936 PMCID: PMC11021484 DOI: 10.1038/s44318-024-00070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
The tight control of fate transitions during stem cell differentiation is essential for proper tissue development and maintenance. However, the challenges in studying sparsely distributed adult stem cells in a systematic manner have hindered efforts to identify how the multilayered regulation of gene expression programs orchestrates stem cell differentiation in vivo. Here, we synchronised Drosophila female germline stem cell (GSC) differentiation in vivo to perform in-depth transcriptome and translatome analyses at high temporal resolution. This characterisation revealed widespread and dynamic changes in mRNA level, promoter usage, exon inclusion, and translation efficiency. Transient expression of the master regulator, Bam, drives a first wave of expression changes, primarily modifying the cell cycle program. Surprisingly, as Bam levels recede, differentiating cells return to a remarkably stem cell-like transcription and translation program, with a few crucial changes feeding into a second phase driving terminal differentiation to form the oocyte. Altogether, these findings reveal that rather than a unidirectional accumulation of changes, the in vivo differentiation of stem cells relies on distinctly regulated and developmentally sequential waves.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Jinghua Gui
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK.
| |
Collapse
|
5
|
Clémot M, D’Alterio C, Kwang AC, Jones DL. mTORC1 is required for differentiation of germline stem cells in the Drosophila melanogaster testis. PLoS One 2024; 19:e0300337. [PMID: 38512882 PMCID: PMC10956854 DOI: 10.1371/journal.pone.0300337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Metabolism participates in the control of stem cell function and subsequent maintenance of tissue homeostasis. How this is achieved in the context of adult stem cell niches in coordination with other local and intrinsic signaling cues is not completely understood. The Target of Rapamycin (TOR) pathway is a master regulator of metabolism and plays essential roles in stem cell maintenance and differentiation. In the Drosophila male germline, mTORC1 is active in germline stem cells (GSCs) and early germ cells. Targeted RNAi-mediated downregulation of mTor in early germ cells causes a block and/or a delay in differentiation, resulting in an accumulation of germ cells with GSC-like features. These early germ cells also contain unusually large and dysfunctional autolysosomes. In addition, downregulation of mTor in adult male GSCs and early germ cells causes non-autonomous activation of mTORC1 in neighboring cyst cells, which correlates with a disruption in the coordination of germline and somatic differentiation. Our study identifies a previously uncharacterized role of the TOR pathway in regulating male germline differentiation.
Collapse
Affiliation(s)
- Marie Clémot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Cecilia D’Alterio
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Alexa C. Kwang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States of America
- Departments of Anatomy, Division of Geriatrics, University of California, San Francisco, San Francisco, CA, United States of America
- Departments of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
6
|
Baptissart M, Papas BN, Chi RPA, Li Y, Lee D, Puviindran B, Morgan M. A unique poly(A) tail profile uncovers the stability and translational activation of TOP transcripts during neuronal differentiation. iScience 2023; 26:107511. [PMID: 37636056 PMCID: PMC10448114 DOI: 10.1016/j.isci.2023.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Cell differentiation is associated with global changes in translational activity. Here, we characterize how mRNA poly(A) tail processing supports this dynamic. We observe that decreased translation during neuronal differentiation of P19 cells correlates with the downregulation of 5'-terminal oligopyrimidine (TOP) transcripts which encode the translational machinery. Despite their downregulation, TOP transcripts remain highly stable and show increased translation as cells differentiate. Changes in TOP mRNA metabolism are reflected by their accumulation with poly(A) tails ∼60-nucleotide (nt) long. The dynamic changes in poly(A) processing can be partially recapitulated by depleting LARP1 or activating the mTOR pathway in undifferentiated cells. Although mTOR-induced accumulation of TOP mRNAs with tails ∼60-nt long does not trigger differentiation, it is associated with reduced proliferation of neuronal progenitors. We propose that while TOP mRNAs are transcriptionally silenced, their post-transcriptional regulation mediated by a specific poly(A) processing ensures an adequate supply of ribosomes to complete differentiation.
Collapse
Affiliation(s)
- Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Brian N. Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Ru-pin Alicia Chi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Dongwon Lee
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Bhairavy Puviindran
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|