1
|
Scherer M, Singh I, Braun MM, Szu-Tu C, Sanchez Sanchez P, Lindenhofer D, Jakobsen NA, Körber V, Kardorff M, Nitsch L, Kautz P, Rühle J, Bianchi A, Cozzuto L, Frömel R, Beneyto-Calabuig S, Lareau C, Satpathy AT, Beekman R, Steinmetz LM, Raffel S, Ludwig LS, Vyas P, Rodriguez-Fraticelli A, Velten L. Clonal tracing with somatic epimutations reveals dynamics of blood ageing. Nature 2025:10.1038/s41586-025-09041-8. [PMID: 40399669 DOI: 10.1038/s41586-025-09041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/17/2025] [Indexed: 05/23/2025]
Abstract
Current approaches used to track stem cell clones through differentiation require genetic engineering1,2 or rely on sparse somatic DNA variants3,4, which limits their wide application. Here we discover that DNA methylation of a subset of CpG sites reflects cellular differentiation, whereas another subset undergoes stochastic epimutations and can serve as digital barcodes of clonal identity. We demonstrate that targeted single-cell profiling of DNA methylation5 at single-CpG resolution can accurately extract both layers of information. To that end, we develop EPI-Clone, a method for transgene-free lineage tracing at scale. Applied to mouse and human haematopoiesis, we capture hundreds of clonal differentiation trajectories across tens of individuals and 230,358 single cells. In mouse ageing, we demonstrate that myeloid bias and low output of old haematopoietic stem cells6 are restricted to a small number of expanded clones, whereas many functionally young-like clones persist in old age. In human ageing, clones with and without known driver mutations of clonal haematopoieis7 are part of a spectrum of age-related clonal expansions that display similar lineage biases. EPI-Clone enables accurate and transgene-free single-cell lineage tracing on hematopoietic cell state landscapes at scale.
Collapse
Affiliation(s)
- Michael Scherer
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Indranil Singh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Martina Maria Braun
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Chelsea Szu-Tu
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Sanchez Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Dominik Lindenhofer
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Verena Körber
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael Kardorff
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Nitsch
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Pauline Kautz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Technische Universität Berlin, Institute of Biotechnology, Berlin, Germany
| | - Julia Rühle
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Agostina Bianchi
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luca Cozzuto
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Robert Frömel
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beneyto-Calabuig
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Caleb Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Renée Beekman
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Palo Alto, CA, USA
| | - Simon Raffel
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alejo Rodriguez-Fraticelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Lars Velten
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
2
|
Saleh RO, Hjazi A, Rab SO, Uthirapathy S, Ganesan S, Shankhyan A, Ravi Kumar M, Sharma GC, Kariem M, Ahmed JK. Single-cell RNA Sequencing Contributes to the Treatment of Acute Myeloid Leukaemia With Hematopoietic Stem Cell Transplantation, Chemotherapy, and Immunotherapy. J Biochem Mol Toxicol 2025; 39:e70218. [PMID: 40233268 DOI: 10.1002/jbt.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/31/2025] [Accepted: 03/02/2025] [Indexed: 04/17/2025]
Abstract
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations and impaired apoptosis, all of which lead to excessive proliferation of malignant blood cells in the bone marrow. It is these mutations that cause tumor heterogeneity, which is linked to a higher risk of relapse and death and makes anti-AML treatments like HSCT, chemotherapy, and immunotherapy (ICI, CAR T-cell-based therapies, and cancer vaccines) less effective. Single-cell RNA sequencing (scRNA-seq) also makes it possible to find cellular subclones and profile tumors, which opens up new diagnostic and therapeutic targets for better AML management. The HSCT process works better when genetic and transcriptional information about the patient and donor stem cells is collected. This saves time and lowers the risk of harmful side effects happening in the body.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and medical technology, University of Al Maarif, Anbar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, Abha, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
3
|
Zhang Y, Nomura M, Nishimura K, Zang W, Koike Y, Xiao M, Ito H, Fukumoto M, Tanaka A, Aoyama Y, Saika W, Hasegawa C, Yamazaki H, Takaori-Kondo A, Inoue D. In-depth functional analysis of BRD9 in fetal hematopoiesis reveals context-dependent roles. iScience 2025; 28:112010. [PMID: 40109374 PMCID: PMC11919606 DOI: 10.1016/j.isci.2025.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The hierarchical organization of hematopoietic stem cells (HSCs) governing adult hematopoiesis has been extensively investigated. However, the dynamic epigenomic transition from fetal to adult hematopoiesis remains incompletely understood, particularly regarding the involvement of epigenetic factors. In this study, we investigate the roles of BRD9, an essential component of the non-canonical BAF (ncBAF) complex known to govern the fate of adult HSCs, in fetal hematopoiesis. Consistent with observations in adult hematopoiesis, BRD9 loss impairs fetal HSC stemness and disturbs erythroid maturation. Intriguingly, the impact on myeloid lineage was discrepant: BRD9 loss inhibited and promoted myeloid differentiation in fetal and adult models, respectively. Through comprehensive transcriptomic and epigenomic analysis, we elucidate the differential roles of BRD9 in a context- and lineage-dependent manner. Our data uncover how BRD9/ncBAF complex modulates transcription in a stage-specific manner, providing deeper insights into the epigenetic regulation underlying the transition from fetal to adult hematopoiesis.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Muran Xiao
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yumi Aoyama
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Department of Hematology, Shiga University of Medical Science, Otsu, Japan
| | - Chihiro Hasegawa
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Cancer Pathology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Singh A, Chia JJ, Rao DS, Hoffmann A. Population dynamics modeling reveals that myeloid bias involves both HSC differentiation and progenitor proliferation biases. Blood 2025; 145:1293-1308. [PMID: 39791596 PMCID: PMC11952015 DOI: 10.1182/blood.2024025598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Aging and chronic inflammation are associated with overabundant myeloid-primed multipotent progenitors (MPPs) among hematopoietic stem and progenitor cells (HSPCs). Although hematopoietic stem cell (HSC) differentiation bias has been considered a primary cause of myeloid bias, whether it is sufficient has not been quantitatively evaluated. Here, we analyzed bone marrow data from the IκB- (Nfkbia+/-Nfkbib-/-Nfkbie-/-) mouse model of inflammation with elevated NFκB activity, which reveals increased myeloid-biased MPPs. We interpreted these data with differential equation models of population dynamics to identify alterations of HSPC proliferation and differentiation rates. This analysis revealed that short-term HSC differentiation bias alone is likely insufficient to account for the increase in myeloid-biased MPPs. To explore additional mechanisms, we used single-cell RNA sequencing (scRNA-seq) measurements of IκB- and wild-type HSPCs to track the continuous differentiation trajectories from HSCs to erythrocyte/megakaryocyte, myeloid, and lymphoid primed progenitors. Fitting a partial differential equations model of population dynamics to these data revealed not only less lymphoid-fate specification among HSCs but also increased expansion of early myeloid-primed progenitors. Differentially expressed genes along the differentiation trajectories supported increased proliferation among these progenitors. These findings were conserved when wild-type HSPCs were transplanted into IκB- recipients, indicating that an inflamed bone marrow microenvironment is a sufficient driver. We then applied our analysis pipeline to scRNA-seq measurements of HSPCs isolated from aged mice and human patients with myeloid neoplasms. These analyses identified the same myeloid-primed progenitor expansion as in the IκB- models, suggesting that it is a common feature across different settings of myeloid bias.
Collapse
Affiliation(s)
- Apeksha Singh
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| | - Jennifer J. Chia
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Fotopoulou F, Rodríguez-Correa E, Dussiau C, Milsom MD. Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? Exp Hematol 2025; 143:104698. [PMID: 39725143 DOI: 10.1016/j.exphem.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues. This review reappraises an HSC-centric view of hematopoietic aging by exploring how the entire hematopoietic hierarchy, from stem cells to mature cells, contributes to age-related disorders. It highlights the decline of both innate and adaptive immunity, leading to increased susceptibility to infections and cancer, and the rise of autoimmunity as peripheral immune cells undergo aging-induced changes. It explores the concept of "inflammaging," where persistent, low-grade inflammation driven by old immune cells creates a cycle of tissue damage and disease. Additionally, this review delves into the roles of inflammation and homeostatic regulation in age-related conditions such as thrombotic events and anemia, arguing that these issues arise from broader dysfunctions rather than stemming from HSC functional attrition alone. In summary, this review highlights the importance of taking a holistic approach to studying hematopoietic aging and its related pathologies. By looking beyond just stem cells and considering the full spectrum of age-associated changes, one can better capture the complexity of aging and attempt to develop preventative or rejuvenation strategies that target multiple facets of this process.
Collapse
Affiliation(s)
- Foteini Fotopoulou
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Esther Rodríguez-Correa
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Charles Dussiau
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
| |
Collapse
|
6
|
Barve A, Cornwell A, Sriram P, Kopyov A, Dabas P, Kooienga E, Kelley Z, Johnson J, Myers JA, Obeng EA, Kang G, Olufadi Y, Cain T, Talbot L, Spence D, Cortes M, Miller S, Loeffler D, Sharma A, McKinney-Freeman S. Senolytics restore hematopoietic stem cell function in sickle cell disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.636742. [PMID: 39975016 PMCID: PMC11839116 DOI: 10.1101/2025.02.08.636742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sickle Cell Disease (SCD) is a blood disorder affecting millions worldwide. Emerging evidence reveals that SCD pathophysiology increases risk of myeloid malignancies and hematopoietic stem cell (HSC) dysfunction, possibly due to pathological stress on bone marrow. To investigate this further, we interrogated mice and individuals with SCD and observed extended cell cycle times, oxidative stress, DNA damage, senescence, and dysregulation of molecular programs associated with these processes in bone marrow hematopoietic stem and progenitor cells (HSPCs). Human SCD HSPCs displayed poor hematopoietic potential ex vivo . SCD mice displayed a dramatic loss of transplantable bone marrow HSPCs, which was reversed upon treatment of SCD mice with the senolytic agent, ABT-263 (navitoclax). Thus, senolytics restore bone marrow function during SCD in mice and represent a novel strategy to improve bone marrow health in individuals with SCD and improve the safety of potentially curative gene therapies that utilize autologous HSPCs from individuals with SCD.
Collapse
|
7
|
Khosroabadi Z, Azaryar S, Dianat-Moghadam H, Amoozgar Z, Sharifi M. Single cell RNA sequencing improves the next generation of approaches to AML treatment: challenges and perspectives. Mol Med 2025; 31:33. [PMID: 39885388 PMCID: PMC11783831 DOI: 10.1186/s10020-025-01085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment. ScRNA-seq allows the identification of quiescent stem-like cells, and leukemia stem cells responsible for resistance to therapeutic approaches and relapse after treatment. This method also introduces the factors and mechanisms that enhance the efficacy of the HSCT process. Generated data of the transcriptional profile of the AML could even allow the development of cancer vaccines and CAR T-cell therapies while saving valuable time and alleviating dangerous side effects of chemotherapy and HSCT in vivo. However, scRNA-seq applications face various challenges such as a large amount of data for high-dimensional analysis, technical noise, batch effects, and finding small biological patterns, which could be improved in combination with artificial intelligence models.
Collapse
Affiliation(s)
- Zahra Khosroabadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Samaneh Azaryar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Jarczak J, Bujko K, Ratajczak MZ, Kucia M. scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes. Sci Rep 2024; 14:29264. [PMID: 39587190 PMCID: PMC11589151 DOI: 10.1038/s41598-024-79810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
A population of CD133+lin-CD45- and CD34+lin-CD45- very small embryonic-like stem cells (VSELs) has been identified in postnatal human tissues, including bone marrow (BM), mobilized peripheral blood (mPB) and umbilical cord blood (UCB). Under appropriate conditions, VSELs in vitro and in vivo differentiate into tissue-committed stem cells for all three germ layers. Molecular analysis of adult murine BM-purified VSELs revealed that these rare cells deposited during development in adult tissues (i) express a similar transcriptome as embryonic stem cells, (ii) share several markers characteristic for epiblast and migratory primordial germ cells (PGCs), (iii) highly express a polycomb group protein enhancer of zeste drosophila homolog 2 (Ezh2) and finally (iv) display a unique pattern of imprinting at crucial paternally inherited genes that promotes their quiescence. Here, by employing single-cell RNA sequencing we demonstrate for the first time that purified from UCB human VSELs defined by expression of CD34 or CD133 antigens and lack of lineage markers, including CD45 antigen express similar molecular signature as murine BM-derived VSELs. Specifically, unsupervised clustering revealed numerous subpopulations of VSELs including ones i) annotated to germline compartments, ii) regulated by parental imprinting, iii) responding to early developmental fate decisions, iv) transcription factors involved in differentiation and development, including homeobox family of genes, and v) expressing innate immunity and purinergic signaling genes.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland.
| |
Collapse
|
9
|
Hu Y, Wan S, Luo Y, Li Y, Wu T, Deng W, Jiang C, Jiang S, Zhang Y, Liu N, Yang Z, Chen F, Li B, Qu K. Benchmarking algorithms for single-cell multi-omics prediction and integration. Nat Methods 2024; 21:2182-2194. [PMID: 39322753 DOI: 10.1038/s41592-024-02429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
The development of single-cell multi-omics technology has greatly enhanced our understanding of biology, and in parallel, numerous algorithms have been proposed to predict the protein abundance and/or chromatin accessibility of cells from single-cell transcriptomic information and to integrate various types of single-cell multi-omics data. However, few studies have systematically compared and evaluated the performance of these algorithms. Here, we present a benchmark study of 14 protein abundance/chromatin accessibility prediction algorithms and 18 single-cell multi-omics integration algorithms using 47 single-cell multi-omics datasets. Our benchmark study showed overall totalVI and scArches outperformed the other algorithms for predicting protein abundance, and LS_Lab was the top-performing algorithm for the prediction of chromatin accessibility in most cases. Seurat, MOJITOO and scAI emerge as leading algorithms for vertical integration, whereas totalVI and UINMF excel beyond their counterparts in both horizontal and mosaic integration scenarios. Additionally, we provide a pipeline to assist researchers in selecting the optimal multi-omics prediction and integration algorithm.
Collapse
Affiliation(s)
- Yinlei Hu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Mathematical Science, University of Science and Technology of China, Hefei, China
| | - Siyuan Wan
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
| | - Yuanhanyu Luo
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yuanzhe Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
| | - Tong Wu
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wentao Deng
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Shan Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Yueping Zhang
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China
| | - Nianping Liu
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Zongcheng Yang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Falai Chen
- School of Mathematical Science, University of Science and Technology of China, Hefei, China.
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China.
| | - Bin Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, China.
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
| |
Collapse
|
10
|
Jin X, Zhang R, Fu Y, Zhu Q, Hong L, Wu A, Wang H. Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies. Brief Funct Genomics 2024; 23:639-650. [PMID: 38688725 DOI: 10.1093/bfgp/elae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.
Collapse
Affiliation(s)
- Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruohan Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunqi Fu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiunan Zhu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
11
|
Elias HK, Mitra S, da Silva MB, Rajagopalan A, Gipson B, Lee N, Kousa AI, Ali MAE, Grassman S, Zhang X, DeWolf S, Smith M, Andrlova H, Argyropoulos KV, Sharma R, Fei T, Sun JC, Dunbar CE, Park CY, Leslie CS, Bhandoola A, van den Brink MRM. An epigenetically distinct HSC subset supports thymic reconstitution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597775. [PMID: 38895335 PMCID: PMC11185715 DOI: 10.1101/2024.06.06.597775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) with multilineage potential are critical for effective T cell reconstitution and restoration of the adaptive immune system after allogeneic Hematopoietic Cell Transplantation (allo-HCT). The Kit lo subset of HSCs is enriched for multipotential precursors, 1, 2 but their T-cell lineage potential has not been well-characterized. We therefore studied the thymic reconstituting and T-cell potential of Kit lo HSCs. Using a preclinical allo-HCT model, we demonstrate that Kit lo HSCs support better thymic recovery, and T-cell reconstitution resulting in improved T cell responses to infection post-HCT. Furthermore, Kit lo HSCs with augmented BM lymphopoiesis mitigate age-associated thymic alterations, thus enhancing T-cell recovery in middle-aged hosts. We find the frequency of the Kit lo subset declines with age, providing one explanation for the reduced frequency of T-competent HSCs and reduced T-lymphopoietic potential in BM precursors of aged mice. 3, 4, 5 Chromatin profiling revealed that Kit lo HSCs exhibit higher activity of lymphoid-specifying transcription factors (TFs), including Zbtb1 . Deletion of Zbtb1 in Kit lo HSCs diminished their T-cell potential, while reinstating Zbtb1 in megakaryocytic-biased Kit hi HSCs rescued T-cell potential, in vitro and in vivo . Finally, we discover an analogous Kit lo HSC subset with enhanced lymphoid potential in human bone marrow. Our results demonstrate that Kit lo HSCs with enhanced lymphoid potential have a distinct underlying epigenetic program.
Collapse
|
12
|
Konturek-Ciesla A, Bryder D. Revitalizing the Aging Immune System Through Selective Stem Cell Targeting. Cell Reprogram 2024; 26:93-95. [PMID: 38917436 DOI: 10.1089/cell.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
The interplay between aging and immune system deterioration presents a formidable challenge to human health, especially in the context of a globally aging population. Aging is associated with a decline in the body's ability to combat infections and an increased risk of various diseases, underlining the importance of rejuvenating the immune system as a strategy for promoting healthier aging. In issue 628 of Nature (2024), Ross et al. present a compelling study that introduces a novel strategy for rejuvenating the aged immune system (Ross et al., 2024). By using antibodies to selectively eliminate "aberrant" hematopoietic stem cells (HSCs), this research opens new avenues for addressing age-related immune deterioration.
Collapse
Affiliation(s)
- Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Ediriwickrema A, Nakauchi Y, Fan AC, Köhnke T, Hu X, Luca BA, Kim Y, Ramakrishnan S, Nakamoto M, Karigane D, Linde MH, Azizi A, Newman AM, Gentles AJ, Majeti R. A single cell framework identifies functionally and molecularly distinct multipotent progenitors in adult human hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592983. [PMID: 38766031 PMCID: PMC11100686 DOI: 10.1101/2024.05.07.592983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to appropriately meet the biological demands of the human body. Human MPPs remain ill-defined whereas mouse MPPs have been well characterized with distinct immunophenotypes and lineage potencies. Using multiomic single cell analyses and complementary functional assays, we identified new human MPPs and oligopotent progenitor populations within Lin-CD34+CD38dim/lo adult bone marrow with distinct biomolecular and functional properties. These populations were prospectively isolated based on expression of CD69, CLL1, and CD2 in addition to classical markers like CD90 and CD45RA. We show that within the canonical Lin-CD34+CD38dim/loCD90CD45RA-MPP population, there is a CD69+ MPP with long-term engraftment and multilineage differentiation potential, a CLL1+ myeloid-biased MPP, and a CLL1-CD69-erythroid-biased MPP. We also show that the canonical Lin-CD34+CD38dim/loCD90-CD45RA+ LMPP population can be separated into a CD2+ LMPP with lymphoid and myeloid potential, a CD2-LMPP with high lymphoid potential, and a CLL1+ GMP with minimal lymphoid potential. We used these new HSPC profiles to study human and mouse bone marrow cells and observe limited cell type specific homology between humans and mice and cell type specific changes associated with aging. By identifying and functionally characterizing new adult MPP sub-populations, we provide an updated reference and framework for future studies in human hematopoiesis.
Collapse
|
14
|
Freie B, Carroll PA, Varnum-Finney BJ, Ramsey EL, Ramani V, Bernstein I, Eisenman RN. A germline point mutation in the MYC-FBW7 phosphodegron initiates hematopoietic malignancies. Genes Dev 2024; 38:253-272. [PMID: 38565249 PMCID: PMC11065175 DOI: 10.1101/gad.351292.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently acquire point mutations in the MYC phosphodegron, including at threonine 58 (T58), where phosphorylation permits binding via the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ∼60% of adult homozygous T58A mice. We found that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and up-regulate a subset of MYC target genes important in maintaining stem/progenitor cell balance. In lymphocytes, genomic occupancy by MYC-T58A was increased at all promoters compared with WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation stabilizing MYC is sufficient to skew target gene expression, producing a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.
Collapse
Affiliation(s)
- Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA;
| | - Patrick A Carroll
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | | | - Erin L Ramsey
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, University of California, San Francisco, San Francisco, California 94158, USA
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA;
| |
Collapse
|
15
|
Scherer M, Singh I, Braun M, Szu-Tu C, Kardorff M, Rühle J, Frömel R, Beneyto-Calabuig S, Raffel S, Rodriguez-Fraticelli A, Velten L. Somatic epimutations enable single-cell lineage tracing in native hematopoiesis across the murine and human lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587514. [PMID: 38617287 PMCID: PMC11014487 DOI: 10.1101/2024.04.01.587514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Current approaches to lineage tracing of stem cell clones require genetic engineering or rely on sparse somatic DNA variants, which are difficult to capture at single-cell resolution. Here, we show that targeted single-cell measurements of DNA methylation at single-CpG resolution deliver joint information about cellular differentiation state and clonal identities. We develop EPI-clone, a droplet-based method for transgene-free lineage tracing, and apply it to study hematopoiesis, capturing hundreds of clonal trajectories across almost 100,000 single-cells. Using ground-truth genetic barcodes, we demonstrate that EPI-clone accurately identifies clonal lineages throughout hematopoietic differentiation. Applied to unperturbed hematopoiesis, we describe an overall decline of clonal complexity during murine ageing and the expansion of rare low-output stem cell clones. In aged human donors, we identified expanded hematopoietic clones with and without genetic lesions, and various degrees of clonal complexity. Taken together, EPI-clone enables accurate and transgene-free single-cell lineage tracing at scale.
Collapse
Affiliation(s)
- Michael Scherer
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Indranil Singh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Martina Braun
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Chelsea Szu-Tu
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Michael Kardorff
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Julia Rühle
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Robert Frömel
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beneyto-Calabuig
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Raffel
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alejo Rodriguez-Fraticelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Lars Velten
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
16
|
Vukadin L, Park B, Mohamed M, Li H, Elkholy A, Torrelli-Diljohn A, Kim JH, Jeong K, Murphy JM, Harvey CA, Dunlap S, Gehrs L, Lee H, Kim HG, Sah JP, Lee SN, Stanford D, Barrington RA, Foote JB, Sorace AG, Welner RS, Hildreth BE, Lim STS, Ahn EYE. A mouse model of Zhu-Tokita-Takenouchi-Kim syndrome reveals indispensable SON functions in organ development and hematopoiesis. JCI Insight 2024; 9:e175053. [PMID: 38290089 PMCID: PMC10972584 DOI: 10.1172/jci.insight.175053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss of function of SON. While patients with ZTTK syndrome live with numerous symptoms, the lack of model organisms hampers our understanding of SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, including leukopenia and immunoglobulin deficiency, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency shifted cell fate more toward the myeloid lineage but compromised lymphoid lineage development by reducing genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency caused inappropriate activation of erythroid genes and impaired erythropoiesis. These findings highlight the importance of the full gene expression of Son in multiple organs. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.
Collapse
Affiliation(s)
- Lana Vukadin
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Bohye Park
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Mostafa Mohamed
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Huashi Li
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Amr Elkholy
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Alex Torrelli-Diljohn
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jung-Hyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi-do, South Korea
| | - Kyuho Jeong
- Department of Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - James M. Murphy
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Caitlin A. Harvey
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Sophia Dunlap
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Leah Gehrs
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Hanna Lee
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Hyung-Gyoon Kim
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | - Jay Prakash Sah
- Department of Pathology, Division of Molecular and Cellular Pathology, and
| | | | - Denise Stanford
- Department of Medicine, Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | | | - Anna G. Sorace
- Department of Radiology and
- O’Neal Comprehensive Cancer Center, and
| | - Robert S. Welner
- O’Neal Comprehensive Cancer Center, and
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Blake E. Hildreth
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| | - Ssang-Taek Steve Lim
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, and
- O’Neal Comprehensive Cancer Center, and
| |
Collapse
|
17
|
Castelo J, Araujo-Aris S, Barriales D, Tanner Pasco S, Seoane I, Peña-Cearra A, Palacios A, Simó C, Garcia-Cañas V, Khamwong M, Martín-Ruiz I, Gonzalez-Lopez M, Barcena L, Martín Rodríguez JE, Lavín JL, Gutiez N, Marcos R, Atondo E, Cobela A, Plaza-Vinuesa L, Plata A, Santos-Fernandez E, Fernandez-Tejada A, Villarán MC, Mancheño JM, Maria Flores J, María Aransay A, Pellón A, de Las Rivas B, Muñoz R, Margolles A, Ruas-Madiedo P, Victoria Selma M, Gomez de Agüero M, Abecia L, Anguita J, Rodríguez H. The microbiota metabolite, phloroglucinol, confers long-term protection against inflammation. Gut Microbes 2024; 16:2438829. [PMID: 39676480 DOI: 10.1080/19490976.2024.2438829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Phloroglucinol is a key byproduct of gut microbial metabolism that has been widely used as a treatment for irritable bowel syndrome. Here, we demonstrate that phloroglucinol tempers macrophage responses to pro-inflammatory pathogens and stimuli. In vivo, phloroglucinol administration decreases gut and extraintestinal inflammation in murine models of inflammatory bowel disease and systemic infection. The metabolite induces modest modifications in the microbiota. However, the presence of an active microbiota is required to preserve its anti-inflammatory activity. Remarkably, the protective effect of phloroglucinol lasts partially at least 6 months. Single-cell transcriptomic analysis of bone marrow progenitors demonstrates the capacity of the metabolite to induce long-lasting innate immune training in hematopoietic lineages, at least partially through the participation of the receptor and transcription factor, aryl hydrocarbon receptor (AhR). Phloroglucinol induces alterations in metabolic and epigenetic pathways that are most prevalent in upstream progenitors as hallmarks of central trained immunity. These data identify phloroglucinol as a dietary-derived compound capable of inducing central trained immunity and modulating the response of the host to inflammatory insults.
Collapse
Affiliation(s)
- Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sarai Araujo-Aris
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Iratxe Seoane
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Carolina Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, Spain
| | - Virginia Garcia-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, Spain
| | - Muthita Khamwong
- Würzburg Institute of Systems Immunology, Max-Planck Research Group at the Julius-Maximilians Universität, Würzburg, Germany
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Laura Barcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - José Luís Lavín
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-BRTA, Derio, Spain
| | - Naiara Gutiez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Raquel Marcos
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Estibaliz Atondo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Arantza Cobela
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Laura Plaza-Vinuesa
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Adrián Plata
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Alberto Fernandez-Tejada
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera (IQF), CSIC, Madrid, Spain
| | - Juana Maria Flores
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana María Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aize Pellón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Blanca de Las Rivas
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Rosario Muñoz
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Abelardo Margolles
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Maria Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max-Planck Research Group at the Julius-Maximilians Universität, Würzburg, Germany
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Héctor Rodríguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
18
|
Vukadin L, Park B, Mohamed M, Li H, Elkholy A, Torrelli-Diljohn A, Kim JH, Jeong K, Murphy JM, Harvey CA, Dunlap S, Gehrs L, Lee H, Kim HG, Lee SN, Stanford D, Barrington RA, Foote JB, Sorace AG, Welner RS, Hildreth BE, Lim STS, Ahn EYE. A mouse model of ZTTK syndrome reveals indispensable SON functions in organ development and hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567732. [PMID: 38014320 PMCID: PMC10680872 DOI: 10.1101/2023.11.19.567732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss-of-function of SON. While ZTTK syndrome patients suffer from numerous symptoms, the lack of model organisms hamper our understanding of both SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency inclines cell fate toward the myeloid lineage but compromises lymphoid lineage development by reducing key genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency causes inappropriate activation of erythroid genes and impaired erythroid maturation. These findings highlight the importance of the full gene dosage of Son in organ development and hematopoiesis. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.
Collapse
Affiliation(s)
- Lana Vukadin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bohye Park
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mostafa Mohamed
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huashi Li
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elkholy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alex Torrelli-Diljohn
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jung-Hyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Kyuho Jeong
- Department of Medicine, College of Medicine, Dongguk University, Gyeongju, Korea
| | - James M Murphy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caitlin A. Harvey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sophia Dunlap
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah Gehrs
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hanna Lee
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seth N. Lee
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Department of Medicine, Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S. Welner
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Blake E. Hildreth
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ssang-Taek Steve Lim
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Freie B, Carroll PA, Varnum-Finney BJ, Ramani V, Bernstein I, Eisenman RN. A Germline Point Mutation in the MYC-FBW7 Phosphodegron Initiates Hematopoietic Malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563660. [PMID: 37961183 PMCID: PMC10634767 DOI: 10.1101/2023.10.23.563660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently contain point mutations in the MYC phospho-degron, including at threonine-58 (T58), where phosphorylation permits binding by the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ~60% of adult homozygous T58A mice. We find that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and upregulate a subset of Myc target genes important in maintaining stem/progenitor cell balance. Genomic occupancy by MYC-T58A was increased at all promoters, compared to WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation in Myc is sufficient to produce a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.
Collapse
Affiliation(s)
- Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Patrick A Carroll
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | | | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, University of California, San Francisco, San Francisco CA, USA
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| |
Collapse
|
20
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|