1
|
Vasudevan J, Vijayakumar R, Reales-Calderon JA, Lam MSY, Ow JR, Aw J, Tan D, Tan AT, Bertoletti A, Adriani G, Pavesi A. In vitro integration of a functional vasculature to model endothelial regulation of chemotherapy and T-cell immunotherapy in liver cancer. Biomaterials 2025; 320:123175. [PMID: 40043483 DOI: 10.1016/j.biomaterials.2025.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/06/2025]
Abstract
The complex tumor microenvironment (TME) presents significant challenges to the development of effective therapies against solid tumors, highlighting the need for advanced in vitro models that better recapitulate TME biology. To address this, we developed a vascularized human liver tumor model using a microfluidic platform, designed to test both drug and cell-based therapies. This model mimics critical tumorigenic features such as hypoxia, extracellular matrix (ECM), and perfusable vascular networks. Intravascular administration of Sorafenib demonstrated its ability to disrupt vascular structures significantly, while eliciting heterogeneous responses in two distinct liver tumor cell lines, HepG2 and Hep3b. Furthermore, treatment with engineered T-cells revealed that the tumor vasculature impeded T-cell infiltration into the tumor core but preserved their cytotoxic capacity, albeit with reduced exhaustion levels. Cytokine analysis and spatial profiling of vascularized tumor samples identified proinflammatory factors that may enhance T-cell-mediated antitumor responses. By capturing key TME characteristics, this microfluidic platform provides a powerful tool enabling detailed investigation of tumor-immune and tumor-vascular interactions. Its versatility could serve as a promising bridge between preclinical studies and clinical testing, offering opportunities for developing and optimizing personalized therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Jyothsna Vasudevan
- Mechanobiology Institute, National University of Singapore (NUS), 5A Engineering Drive 1, Singapore, 117411, Republic of Singapore
| | - Ragavi Vijayakumar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Jose Antonio Reales-Calderon
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Maxine S Y Lam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Joey Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Damien Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Anthony Tanoto Tan
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Antonio Bertoletti
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Andrea Pavesi
- Mechanobiology Institute, National University of Singapore (NUS), 5A Engineering Drive 1, Singapore, 117411, Republic of Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore; Lee Kong Chian School of Medicine (LKCMedicine), Cancer Discovery and Regenerative Medicine Program, Nanyang Technological University, 308232, Republic of Singapore.
| |
Collapse
|
2
|
Ling X, Chen G, Liu N, Xu W, Ding M. Integration of Single-Cell RNA Sequencing Data and Bulk Sequencing Data to Characterise the CD8+ T-Cell Exhaustion Mediated Immune Microenvironment in CRC. J Cell Mol Med 2025; 29:e70556. [PMID: 40356050 PMCID: PMC12069026 DOI: 10.1111/jcmm.70556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
CD8+ T cells are crucial for the anti-tumour immune response, and their exhaustion contributes to poor prognosis and limited immunotherapy efficacy in colorectal cancer (CRC). In this study, we examined the immune microenvironment of CRC by integrating single-cell RNA sequencing (scRNA-seq) and bulk sequencing data. T-cell subtypes in tumour tissues were analysed using CellMarker 2.0 and scType, and an intercellular communication network was constructed through CellChat. Our analysis revealed that exhausted CD8+ T cells exhibit strong interactions with epithelial cells, primarily via the MIF-(CD74 + CXCR4), MIF-(CD74 + CD44) and CD99-CD99 pathways. Based on CD8+ T-cell exhaustion markers, we developed a prognostic model using XGBoost, which demonstrated promising predictive capabilities for CRC prognosis and immunotherapy response. Functional assays showed that MIF knock-down significantly inhibited CRC cell proliferation and invasion. Our findings suggest that MIF and CD99 are key regulators of CD8+ T-cell exhaustion in CRC. This study provides novel insights into the mechanisms underlying T-cell exhaustion in CRC and offers potential biomarkers for improving immunotherapy outcomes.
Collapse
Affiliation(s)
- Xiao‐Hua Ling
- Department of GastroenterologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Gang Chen
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Nan‐Nan Liu
- Department of GastroenterologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinPeople's Republic of China
| | - Wen‐Xin Xu
- Department of Intensive Care UnitThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Ming‐Feng Ding
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| |
Collapse
|
3
|
Wang H, Concannon P, Ge Y. Roles of TULA-family proteins in T cells and autoimmune diseases. Genes Immun 2025; 26:54-62. [PMID: 39558087 DOI: 10.1038/s41435-024-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
The T cell Ubiquitin Ligand (TULA) protein family contains two members, UBASH3A and UBASH3B, that display similarities in protein sequence and domain structure. Both TULA proteins act to repress T cell activation via a combination of overlapping and nonredundant functions. UBASH3B acts mainly as a phosphatase that suppresses proximal T cell receptor (TCR) signaling. In contrast, UBASH3A acts primarily as an adaptor protein, interacting with other proteins (including UBASH3B) in T cells upon TCR stimulation and resulting in downregulation of TCR signaling and NF-κB signaling. Human genetic and functional studies have revealed another notable distinction between UBASH3A and UBASH3B: numerous genome-wide association studies have identified statistically significant associations between genetic variants in and around the UBASH3A gene and at least seven different autoimmune diseases, suggesting a key role of UBASH3A in autoimmunity. However, the evidence for an independent role of UBASH3B in autoimmune disease is limited. This review summarizes key findings regarding the roles of TULA proteins in T cell biology and autoimmunity, highlights the commonalities and differences between UBASH3A and UBASH3B, and speculates on the individual and joint effects of TULA proteins on T cell signaling.
Collapse
Affiliation(s)
- Hua Wang
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yan Ge
- International Center for Genetic Engineering and Biotechnology, China Regional Research Center, Taizhou, Jiangsu Province, China.
| |
Collapse
|
4
|
Lo Tartaro D, Aramini B, Masciale V, Paschalidis N, Lofaro FD, Neroni A, Borella R, Santacroce E, Ciobanu AL, Samarelli AV, Boraldi F, Quaglino D, Dubini A, Gaudio M, Manzotti G, Reggiani F, Torricelli F, Ciarrocchi A, Neri A, Bertolini F, Dominici M, Filosso PL, Stella F, Gibellini L, De Biasi S, Cossarizza A. Metabolically activated and highly polyfunctional intratumoral VISTA + regulatory B cells are associated with tumor recurrence in early-stage NSCLC. Mol Cancer 2025; 24:16. [PMID: 39810191 PMCID: PMC11730485 DOI: 10.1186/s12943-024-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC. Our analysis revealed that TME contains diverse B cell clusters, including VISTA+ Bregs, with distinct metabolic and functional profiles. Target liquid chromatography-tandem mass spectrometry confirmed the expression of VISTA on B cells. VISTA+ Bregs displayed high metabolic demand and were able to produce different cytokines, including interleukin (IL)-10, transforming growth factor (TGF)-β, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Spatial analysis showed colocalization of B cells with CD4+/CD8+ T lymphocytes in TME. The computational analysis of intercellular communications that links ligands to target genes, performed by NicheNet, predicted B-T interactions via VISTA-PSGL-1 axis. Colocalization analyses revealed that PSGL-1 T cells and VISTA+ B cells are adjacent in the TME. Notably, tumor infiltrating CD8+ T cells expressing PSGL-1 exhibited enhanced metabolism and cytotoxicity. In NSCLC patients, prediction analysis performed by PENCIL revealed the presence of an association between PSGL-1+CD8+ T cells and VISTA+ Bregs with lung recurrence. Our findings suggest a potential interaction between Bregs and T cells through the VISTA-PSGL-1 axis, that could influence NSCLC recurrence.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/immunology
- Tumor Microenvironment/immunology
- B7 Antigens/metabolism
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Female
- Male
- Middle Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | | | | | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Bertolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pier Luigi Filosso
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
5
|
Pereira JL, Arede L, Ferreira F, Matos A, Pereira D, Santos RF, Carmo AM, Oliveira MJ, Machado JC, Duarte D, Dos Santos NR. Antibody blockade of the PSGL-1 immune checkpoint enhances T-cell responses to B-cell lymphoma. Leukemia 2025; 39:178-188. [PMID: 39455852 DOI: 10.1038/s41375-024-02446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Despite advancements in cancer immunotherapy, most lymphomas remain unresponsive to checkpoint inhibitors. P-selectin glycoprotein ligand-1 (PSGL-1), recently identified as a promoter of T-cell exhaustion in murine melanoma models, has emerged as a novel immune checkpoint protein and promising immunotherapeutic target. In this study, we investigated the potential of PSGL-1 antibody targeting in B-cell lymphoma. Using allogeneic co-culture systems, we demonstrated that targeted antibody interventions against human PSGL-1 enhanced T-cell activation and effector cytokine production in response to lymphoma cells. Moreover, in vitro treatment of primary lymphoma cell suspensions with PSGL-1 antibody resulted in increased activation of autologous lymphoma-infiltrating T cells. Using the A20 syngeneic B-cell lymphoma mouse model, we found that PSGL-1 antibody treatment significantly slowed tumor development and reduced the endpoint tumor burden. This antitumoral effect was accompanied by augmented tumor infiltration of CD4+ and CD8+ T cells and reduced infiltration of regulatory T cells. Finally, anti-PSGL-1 administration enhanced the expansion of CAR T cells previously transferred to mice bearing the aggressive Eμ-Myc lymphoma cells and improved disease control. These results demonstrate that PSGL-1 antibody blockade bolsters T-cell activity against B-cell lymphoma, suggesting a potential novel immunotherapeutic approach for treating these malignancies.
Collapse
Affiliation(s)
- João L Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Liliana Arede
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Master´s Program in Bioengineering, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, and Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Genetics Laboratory, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Ecogenetics and Human Health, Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Dulcineia Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Rita F Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ESS-IPP, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Alexandre M Carmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Delfim Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Nuno R Dos Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
9
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
10
|
Tian W, Wei W, Qin G, Bao X, Tong X, Zhou M, Xue Y, Zhang Y, Shao Q. Lymphocyte homing and recirculation with tumor tertiary lymphoid structure formation: predictions for successful cancer immunotherapy. Front Immunol 2024; 15:1403578. [PMID: 39076974 PMCID: PMC11284035 DOI: 10.3389/fimmu.2024.1403578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
The capacity of lymphocytes continuously home to lymphoid structures is remarkable for cancer immunosurveillance and immunotherapy. Lymphocyte homing and recirculation within the tumor microenvironment (TME) are now understood to be adaptive processes that are regulated by specialized cytokines and adhesion molecule signaling cascades. Restricted lymphocyte infiltration and recirculation have emerged as key mechanisms contributing to poor responses in cancer immunotherapies like chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockades (ICBs). Uncovering the kinetics of lymphocytes in tumor infiltration and circulation is crucial for improving immunotherapies. In this review, we discuss the current insights into the adhesive and migrative molecules involved in lymphocyte homing and transmigration. The potential mechanisms within the TME that restrain lymphocyte infiltration are also summarized. Advanced on these, we outline the determinates for tertiary lymphoid structures (TLSs) formation within tumors, placing high expectations on the prognostic values of TLSs as therapeutic targets in malignancies.
Collapse
Affiliation(s)
- Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wangzhi Wei
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gaofeng Qin
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Xuecheng Tong
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Min Zhou
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuan Xue
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yu Zhang
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
11
|
Rabi LT, Valente DZ, de Souza Teixeira E, Peres KC, de Oliveira Almeida M, Bufalo NE, Ward LS. Potential new cancer biomarkers revealed by quantum chemistry associated with bioinformatics in the study of selectin polymorphisms. Heliyon 2024; 10:e28830. [PMID: 38586333 PMCID: PMC10998122 DOI: 10.1016/j.heliyon.2024.e28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding the complex mechanisms involved in diseases caused by or related to important genetic variants has led to the development of clinically useful biomarkers. However, the increasing number of described variants makes it difficult to identify variants worthy of investigation, and poses challenges to their validation. We combined publicly available datasets and open source robust bioinformatics tools with molecular quantum chemistry methods to investigate the involvement of selectins, important molecules in the cell adhesion process that play a fundamental role in the cancer metastasis process. We applied this strategy to investigate single nucleotide variants (SNPs) in the intronic and UTR regions and missense SNPs with amino acid changes in the SELL, SELP, SELE, and SELPLG genes. We then focused on thyroid cancer, seeking these SNPs potential to identify biomarkers for susceptibility, diagnosis, prognosis, and therapeutic targets. We demonstrated that SELL gene polymorphisms rs2229569, rs1131498, rs4987360, rs4987301 and rs2205849; SELE gene polymorphisms rs1534904 and rs5368; rs3917777, rs2205894 and rs2205893 of SELP gene; and rs7138370, rs7300972 and rs2228315 variants of SELPLG gene may produce important alterations in the DNA structure and consequent changes in the morphology and function of the corresponding proteins. In conclusion, we developed a strategy that may save valuable time and resources in future investigations, as we were able to provide a solid foundation for the selection of selectin gene variants that may become important biomarkers and deserve further investigation in cancer patients. Large-scale clinical studies in different ethnic populations and laboratory experiments are needed to validate our results.
Collapse
Affiliation(s)
- Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- .Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - Davi Zanoni Valente
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Elisangela de Souza Teixeira
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
| | | | - Natassia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| |
Collapse
|
12
|
O'Dwyer M, Kirkham-McCarthy L, Cerreto M, Foà R, Natoni A. PSGL-1 decorated with sialyl Lewis a/x promotes high affinity binding of myeloma cells to P-selectin but is dispensable for E-selectin engagement. Sci Rep 2024; 14:1756. [PMID: 38243063 PMCID: PMC10798956 DOI: 10.1038/s41598-024-52212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
Dissemination of multiple myeloma into the bone marrow proceeds through sequential steps mediated by a variety of adhesion molecules and chemokines that eventually results in the extravasation of malignant plasma cells into this protective niche. Selectins are a class of C-type lectins that recognize carbohydrate structures exposed on blood borne cells and participate in the first step of the extravasation cascade, serving as brakes to slow down circulating cells enabling them to establish firm adhesion onto the endothelium. Myeloma cells enriched for the expression of selectin ligands present an aggressive disease in vivo that is refractory to bortezomib treatment and can be reverted by small molecules targeting E-selectin. In this study, we have defined the molecular determinants of the selectin ligands expressed on myeloma cells. We show that PSGL-1 is the main protein carrier of sialyl Lewisa/x-related structures in myeloma. PSGL-1 decorated with sialyl Lewisa/x is essential for P-selectin binding but dispensable for E-selectin binding. Moreover, sialylation is required for E-selectin engagement whereas high affinity binding to P-selectin occurs even in the absence of sialic acid. This study provides further knowledge on the biology of selectin ligands in myeloma, opening the way to their clinical application as diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Michael O'Dwyer
- Translational Research Facility, University of Galway, Galway, Ireland
| | - Lucy Kirkham-McCarthy
- Biomedical Sciences, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Marina Cerreto
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
13
|
Zaongo SD, Chen Y. PSGL-1, a Strategic Biomarker for Pathological Conditions in HIV Infection: A Hypothesis Review. Viruses 2023; 15:2197. [PMID: 38005875 PMCID: PMC10674231 DOI: 10.3390/v15112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) has been established to be a cell adhesion molecule that is involved in the cellular rolling mechanism and the extravasation cascade, enabling the recruitment of immune cells to sites of inflammation. In recent years, researchers have established that PSGL-1 also functions as an HIV restriction factor. PSGL-1 has been shown to inhibit the HIV reverse transcription process and inhibit the infectivity of HIV virions produced by cells expressing PSGL-1. Cumulative evidence gleaned from contemporary literature suggests that PSGL-1 expression negatively affects the functions of immune cells, particularly T-cells, which are critical participants in the defense against HIV infection. Indeed, some researchers have observed that PSGL-1 expression and signaling provokes T-cell exhaustion. Additionally, it has been established that PSGL-1 may also mediate virus capture and subsequent transfer to permissive cells. We therefore believe that, in addition to its beneficial roles, such as its function as a proinflammatory molecule and an HIV restriction factor, PSGL-1 expression during HIV infection may be disadvantageous and may potentially predict HIV disease progression. In this hypothesis review, we provide substantial discussions with respect to the possibility of using PSGL-1 to predict the potential development of particular pathological conditions commonly seen during HIV infection. Specifically, we speculate that PSGL-1 may possibly be a reliable biomarker for immunological status, inflammation/translocation, cell exhaustion, and the development of HIV-related cancers. Future investigations directed towards our hypotheses may help to evolve innovative strategies for the monitoring and/or treatment of HIV-infected individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China;
| |
Collapse
|
14
|
Díaz-García E, García-Sánchez A, Alfaro E, López-Fernández C, Mañas E, Cano-Pumarega I, López-Collazo E, García-Río F, Cubillos-Zapata C. PSGL-1: a novel immune checkpoint driving T-cell dysfunction in obstructive sleep apnea. Front Immunol 2023; 14:1277551. [PMID: 37854605 PMCID: PMC10579800 DOI: 10.3389/fimmu.2023.1277551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Although higher incidence of cancer represents a major burden for obstructive sleep apnea (OSA) patients, the molecular pathways driving this association are not completely understood. Recently, the adhesion receptor P-selectin glycoprotein-1 (PSGL 1) has been identified as a novel immune checkpoint, which are recognized major hallmarks in several types of cancer and have revolutionized cancer therapy. Methods The expression of PSGL-1 and its ligands VISTA and SIGLEC-5 was assessed in the leucocytes of OSA patients and control subjects exploring the role of intermittent hypoxia (IH) using in vitro models. In addition, PSGL-1 impact on T-cells function was evaluated by ex vivo models. Results Data showed PSGL-1 expression is upregulated in the T-lymphocytes from patients with severe OSA, indicating a relevant role of hypoxemia mediated by intermittent hypoxia. Besides, results suggest an inhibitory role of PSGL-1 on T-cell proliferation capacity. Finally, the expression of SIGLEC-5 but not VISTA was increased in monocytes from OSA patients, suggesting a regulatory role of intermittent hypoxia. Discussion In conclusion, PSGL-1 might constitute an additional immune checkpoint leading to T-cell dysfunction in OSA patients, contributing to the disruption of immune surveillance, which might provide biological plausibility to the higher incidence and aggressiveness of several tumors in these patients.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Aldara García-Sánchez
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Enrique Alfaro
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Cristina López-Fernández
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Eva Mañas
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Eduardo López-Collazo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- The Innate Immune Response Group, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| | - Francisco García-Río
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, Hospital La Paz Institute for Health Research – IdiPAZ, Madrid, Spain
| |
Collapse
|
15
|
Zaman A, French JB, Carpino N. The Sts Proteins: Modulators of Host Immunity. Int J Mol Sci 2023; 24:8834. [PMID: 37240179 PMCID: PMC10218301 DOI: 10.3390/ijms24108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The suppressor of TCR signaling (Sts) proteins, Sts-1 and Sts-2, are a pair of closely related signaling molecules that belong to the histidine phosphatase (HP) family of enzymes by virtue of an evolutionarily conserved C-terminal phosphatase domain. HPs derive their name from a conserved histidine that is important for catalytic activity and the current evidence indicates that the Sts HP domain plays a critical functional role. Sts-1HP has been shown to possess a readily measurable protein tyrosine phosphatase activity that regulates a number of important tyrosine-kinase-mediated signaling pathways. The in vitro catalytic activity of Sts-2HP is significantly lower than that of Sts-1HP, and its signaling role is less characterized. The highly conserved unique structure of the Sts proteins, in which additional domains, including one that exhibits a novel phosphodiesterase activity, are juxtaposed together with the phosphatase domain, suggesting that Sts-1 and -2 occupy a specialized intracellular signaling niche. To date, the analysis of Sts function has centered predominately around the role of Sts-1 and -2 in regulating host immunity and other responses associated with cells of hematopoietic origin. This includes their negative regulatory role in T cells, platelets, mast cells and other cell types, as well as their less defined roles in regulating host responses to microbial infection. Regarding the latter, the use of a mouse model lacking Sts expression has been used to demonstrate that Sts contributes non-redundantly to the regulation of host immunity toward a fungal pathogen (C. albicans) and a Gram-negative bacterial pathogen (F. tularensis). In particular, Sts-/- animals demonstrate significant resistance to lethal infections of both pathogens, a phenotype that is correlated with some heightened anti-microbial responses of phagocytes derived from mutant mice. Altogether, the past several years have seen steady progress in our understanding of Sts biology.
Collapse
Affiliation(s)
- Anika Zaman
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Jarrod B. French
- Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA;
| | - Nick Carpino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|