1
|
Xiong K, Lou S, Lian Z, Wu Y, Kou Z. The GluN3-containing NMDA receptors. Channels (Austin) 2025; 19:2490308. [PMID: 40235311 PMCID: PMC12005412 DOI: 10.1080/19336950.2025.2490308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are heterotetrameric ion channels that play crucial roles in brain function. Among all the NMDAR subtypes, GluN1-N3 receptors exhibit unique agonist binding and gating properties. Unlike "conventional" GluN1-N2 receptors, which require both glycine and glutamate for activation, GluN1-N3 receptors are activated solely by glycine. Furthermore, GluN1-N3 receptors display faster desensitization, reduced Ca2+ permeability, and lower sensitivity to Mg2+ blockage compared to GluN1-N2 receptors. Due to these characteristics, GluN1-N3 receptors are thought to play critical roles in eliminating redundant synapses and pruning spines in early stages of brain development. Recent studies have advanced pharmacological tools for specifically targeting GluN1-N3 receptors and provided direct evidence of these glycine-activated excitatory receptors in native brain tissue. The structural basis of GluN1-N3 receptors has also been elucidated through cryo-EM and artificial intelligence. These findings highlight that GluN1-N3 receptors are not only involved in essential brain functions but also present potential targets for drug development.
Collapse
Affiliation(s)
- Kunlong Xiong
- Department of Pulmonary and Critical Care Medicine, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shulei Lou
- Institute of Hospital Management, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zuoyu Lian
- Department of General Practice, Cicheng Town Central Health Center, Ningbo, Zhejiang, China
| | - Yunlin Wu
- Hospital Infection Control Section, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zengwei Kou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Escamilla S, Badillos R, Comella JX, Solé M, Pérez-Otaño I, Mut JVS, Sáez-Valero J, Cuchillo-Ibáñez I. Synaptic and extrasynaptic distribution of NMDA receptors in the cortex of Alzheimer's disease patients. Alzheimers Dement 2024; 20:8231-8245. [PMID: 39450669 DOI: 10.1002/alz.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Synaptic and extrasynaptic distribution of N-methyl-D-aspartate receptors (NMDARs) has not been addressed in the brain from Alzheimer´s disease (AD) subjects, despite their contribution to neurodegeneration. METHODS We have developed a protocol to isolate synaptic and extrasynaptic membranes from controls and AD frontal cortex. We characterized the distribution of the NMDAR subunits GluN2B, GluN2A, GluN1, and GluN3A, as well as post-translational modifications, such as phosphorylation and glycosylation. RESULTS Lower levels of synaptic GluN2B and GluN2A were found in AD fractions, while extrasynaptic GluN2B and GluN1 levels were significantly higher; GluN3A distribution remained unaffected in AD. We also identified different glycoforms of GluN2B and GluN2A in extrasynaptic membranes. Synaptic Tyr1472 GluN2B phosphorylation was significantly lower in AD fractions. DISCUSSION Reduction of synaptic NMDAR subunits, particularly for GluN2B, is likely to contribute to synaptic transmission failure in AD. Additionally, the increment of extrasynaptic NMDAR subunits could favor the activation of excitotoxicity in AD. HIGHLIGHTS New protocol to isolate synaptic and extrasynaptic membranes from the human cortex. Low GluN2B and GluN2A levels in Alzheimer´s disease (AD) synaptic membranes. High GluN2B and GluN1 levels in AD extrasynaptic membranes. Specific glycoforms of extrasynaptic GluN2B and GluN2A. Low phosphorylation at Tyr1472 in synaptic GluN2B in AD.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (Isabial), Alicante, Spain
| | - Raquel Badillos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, School of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
| | - Joan X Comella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, School of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Montse Solé
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, School of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
| | - Isabel Pérez-Otaño
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Jose V Sánchez Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (Isabial), Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Ciberned), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (Isabial), Alicante, Spain
| |
Collapse
|
3
|
Hurley EP, Mukherjee B, Fang LZ, Barnes JR, Barron JC, Nafar F, Hirasawa M, Parsons MP. GluN3A and Excitatory Glycine Receptors in the Adult Hippocampus. J Neurosci 2024; 44:e0401242024. [PMID: 39256046 PMCID: PMC11484551 DOI: 10.1523/jneurosci.0401-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The GluN3A subunit of N-methyl-D-aspartate receptors (NMDARs) plays an established role in synapse development, but its contribution to neural circuits in the adult brain is less clear. Recent work has demonstrated that in select cell populations, GluN3A assembles with GluN1 to form GluN1/GluN3A receptors that are insensitive to glutamate and instead serve as functional excitatory glycine receptors (eGlyRs). Our understanding of these eGlyRs, and how they contribute to intrinsic excitability and synaptic communication within relevant networks of the developing and the mature brain, is only beginning to be uncovered. Here, using male and female mice, we demonstrate that GluN3A subunits are enriched in the adult ventral hippocampus (VH), where they localize to synaptic and extrasynaptic sites and can assemble as functional eGlyRs on CA1 pyramidal cells. GluN3A expression was barely detectable in the adult dorsal hippocampus (DH). We also observed a high GluN2B content in the adult VH, characterized by slow NMDAR current decay kinetics and a high sensitivity to the GluN2B-containing NMDAR antagonist ifenprodil. Interestingly, the GluN2B enrichment in the adult VH was dependent on GluN3A as GluN3A deletion accelerated NMDAR decay and reduced ifenprodil sensitivity in the VH, suggesting that GluN3A expression can regulate the balance of conventional NMDAR subunit composition at synaptic sites. Lastly, we found that GluN3A knock-out also enhanced both NMDAR-dependent calcium influx and NMDAR-dependent long-term potentiation in the VH. Together, these data reveal a novel role for GluN3A and eGlyRs in the control of ventral hippocampal circuits in the mature brain.
Collapse
Affiliation(s)
- Emily P Hurley
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Bandhan Mukherjee
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Lisa Z Fang
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Jocelyn R Barnes
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Jessica C Barron
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Firoozeh Nafar
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Michiru Hirasawa
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Matthew P Parsons
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| |
Collapse
|
4
|
Escamilla S, Sáez-Valero J, Cuchillo-Ibáñez I. NMDARs in Alzheimer's Disease: Between Synaptic and Extrasynaptic Membranes. Int J Mol Sci 2024; 25:10220. [PMID: 39337704 PMCID: PMC11431980 DOI: 10.3390/ijms251810220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD). The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models and in the brains of AD patients will also be reviewed.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
5
|
Jamet Z, Mergaux C, Meras M, Bouchet D, Villega F, Kreye J, Prüss H, Groc L. NMDA receptor autoantibodies primarily impair the extrasynaptic compartment. Brain 2024; 147:2745-2760. [PMID: 38758090 PMCID: PMC11292910 DOI: 10.1093/brain/awae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Autoantibodies directed against the N-methyl-D-aspartate receptor (NMDAR-Ab) are pathogenic immunoglobulins detected in patients suffering from NMDAR encephalitis. NMDAR-Ab alter the receptor membrane trafficking, synaptic transmission and neuronal network properties, leading to neurological and psychiatric symptoms in patients. Patients often have very little neuronal damage but rapid and massive (treatment-responsive) brain dysfunctions related to an unknown early mechanism of NMDAR-Ab. Our understanding of this early molecular cascade remains surprisingly fragmented. Here, we used a combination of single molecule-based imaging of membrane proteins to unveil the spatiotemporal action of NMDAR-Ab on live hippocampal neurons. We first demonstrate that different clones of NMDAR-Ab primarily affect extrasynaptic (and not synaptic) NMDARs. In the first minutes, NMDAR-Ab increase extrasynaptic NMDAR membrane dynamics, declustering its surface interactome. NMDAR-Ab also rapidly reshuffle all membrane proteins located in the extrasynaptic compartment. Consistent with this alteration of multiple proteins, effects of NMDAR-Ab were not mediated through the sole interaction between the NMDAR and EphB2 receptor. In the long term, NMDAR-Ab reduce the NMDAR synaptic pool by slowing down receptor membrane dynamics in a cross-linking-independent manner. Remarkably, exposing only extrasynaptic NMDARs to NMDAR-Ab was sufficient to produce their full-blown effect on synaptic receptors. Collectively, we demonstrate that NMDAR-Ab initially impair extrasynaptic proteins, then the synaptic ones. These data thus shed new and unsuspected light on the mode of action of NMDAR-Ab and, probably, our understanding of (extra)synaptopathies.
Collapse
Affiliation(s)
- Zoe Jamet
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, CNRS, F-33000 Bordeaux, France
| | - Camille Mergaux
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, CNRS, F-33000 Bordeaux, France
| | - Morgane Meras
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, CNRS, F-33000 Bordeaux, France
| | - Delphine Bouchet
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, CNRS, F-33000 Bordeaux, France
| | - Frédéric Villega
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, CNRS, F-33000 Bordeaux, France
- Department of Pediatric Neurology, CIC-0005, University Children's Hospital of Bordeaux, F-33000 Bordeaux, France
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, CNRS, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Chen Y, Liu S, Jacobi AA, Jeng G, Ulrich JD, Stein IS, Patriarchi T, Hell JW. Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses. Front Synaptic Neurosci 2024; 16:1291262. [PMID: 38660466 PMCID: PMC11039796 DOI: 10.3389/fnsyn.2024.1291262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.
Collapse
Affiliation(s)
- Yucui Chen
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Shangming Liu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Ariel A. Jacobi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Jason D. Ulrich
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Ivar S. Stein
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 2023:S0896-6273(23)00344-6. [PMID: 37236178 DOI: 10.1016/j.neuron.2023.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.
Collapse
Affiliation(s)
- Julien P Dupuis
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|