1
|
Lee WH, Zygiel EM, Lee CH, Oglesby AG, Nolan EM. Calprotectin-mediated survival of Staphylococcus aureus in coculture with Pseudomonas aeruginosa occurs without nutrient metal sequestration. mBio 2025; 16:e0384624. [PMID: 40152583 PMCID: PMC12077171 DOI: 10.1128/mbio.03846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are bacterial pathogens of major clinical concern that cause polymicrobial infections in diverse patient populations. Human calprotectin (CP; S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) is a host-defense protein that contributes to nutritional immunity by sequestering multiple nutrient metal ions including Mn(II), Fe(II), and Zn(II). Here, we examine the consequences of metal availability and CP treatment on cocultures of P. aeruginosa and S. aureus. We report that CP elicits Fe-starvation responses in both P. aeruginosa and S. aureus in coculture, including the upregulation of genes involved in Fe uptake by both organisms. Moreover, analyses of pseudomonal metabolites in coculture supernatants further demonstrate Fe-starvation responses, showing that CP treatment leads to increased siderophore levels and reduced phenazine levels. Consistent with prior studies, growth under conditions of Fe depletion accelerated P. aeruginosa killing of S. aureus in coculture, but treatment with CP promoted S. aureus survival. Treatment with CP site variants lacking functional transition-metal-binding sites and metalated CP also enhanced S. aureus survival in coculture with P. aeruginosa, revealing that this consequence of CP treatment is independent of its canonical metal-sequestering function. Thus, the protective effects of CP treatment during coculture appear to override the observed Fe-starvation effects that make P. aeruginosa more virulent toward S. aureus. This work highlights an unappreciated facet of how CP contributes to host-pathogen and pathogen-pathogen interactions that are relevant to human infectious disease. IMPORTANCE The current working model that describes how the innate immune protein calprotectin (CP) protects the host against bacterial pathogens focuses on its capacity to sequester multiple essential metal nutrients in a process called nutritional immunity. Our study further explores this function by focusing on the effects of metal availability and CP treatment on the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus grown in coculture. These two bacterial pathogens are of significant clinical concern and colocalize with CP at infection sites. This work reveals that CP modulates P. aeruginosa/S. aureus coculture dynamics in a manner that is independent of its ability to sequester nutrient metal ions. This surprising result is important because it demonstrates that CP has metal-independent function and thus contributes to the host-pathogen and pathogen-pathogen interactions in ways that are not accounted for in the current working model focused on metal sequestration.
Collapse
Affiliation(s)
- Wei H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Celis H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Zhang C, Sun S, Zhu T, Fang X, Liu Y, Liu R, Yu J, Li W, Xu C, Dong K. NIR-activating glycyrrhizic acid/carbon nanozyme injectable polysaccharides-based hydrogels for promoting polymicrobial infected wound healing. Int J Biol Macromol 2025; 307:142082. [PMID: 40118398 DOI: 10.1016/j.ijbiomac.2025.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
The slow healing or non-healing of skin wounds caused by polymicrobial infections has become a serious problem in clinical wound treatment. Herein, we have developed a near-infrared (NIR) activating glycyrrhizic acid/carbon nanozyme injectable polysaccharides-based hydrogel (the CPCA hydrogel) for the synergistic treatment of polymicrobial infected wound. The CPCA hydrogel could undergo phase transition at a specific temperature and facilitate administration at the wound site. Additionally, under near-infrared light irradiation, the CPCA hydrogel could generate heat and promote the release of glycyrrhizic acid (GA) for achieving photothermal-drug synergistic treatment of multiple bacteria. Furthermore, the carbon nanozyme (CN) within the injectable polysaccharides-based hydrogel could mimic the activity of superoxide dismutase (SOD) and catalase (CAT) for enabling the removal of reactive oxygen species, effectively alleviating inflammation and promoting wound healing caused by polymicrobial infections. The results of in vitro antibacterial experiments demonstrated the excellent antibacterial effect of CPCA hydrogel on methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, in vivo experiments confirmed that the hydrogels significantly reduced inflammatory responses and accelerated angiogenesis in polymicrobial infected wounds. Collectively, the CPCA hydrogel exhibited excellent antibacterial and anti-inflammatory properties, offering a novel strategy for developing new treatments for polymicrobial infections.
Collapse
Affiliation(s)
- Chenhao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tianyu Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Fang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yaling Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rongji Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Brandt TJ, Skaggs H, Hundley T, Yoder-Himes DR. Burkholderia cenocepacia-mediated inhibition of Staphylococcus aureus growth and biofilm formation. J Bacteriol 2025; 207:e0011623. [PMID: 40135855 PMCID: PMC12004965 DOI: 10.1128/jb.00116-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/01/2024] [Indexed: 03/27/2025] Open
Abstract
Staphylococcus aureus asymptomatically colonizes the nasal cavity and pharynx of up to 60% of the human population and, as an opportunistic pathogen, can breach its normal habitat, resulting in life-threatening infections. S. aureus infections are of additional concern for populations with impaired immune function such as those with cystic fibrosis (CF) or chronic granulomatous disease. Multi-drug resistance is increasingly common in S. aureus infections, creating an urgent need for new antimicrobials or compounds that improve efficacy of currently available antibiotics. S. aureus biofilms, such as those found in the lungs of people with CF and in soft tissue infections, are notoriously recalcitrant to antimicrobial treatment due to the characteristic metabolic differences associated with a sessile mode of growth. In this work, we show that another CF pathogen, Burkholderia cenocepacia, produces one or more secreted compounds that can prevent S. aureus biofilm formation and inhibit existing S. aureus biofilms. The B. cenocepacia-mediated antagonistic activity is restricted to S. aureus species and perhaps some other staphylococci; however, this inhibition does not necessarily extend to other Gram-positive species. This inhibitory activity is due to death of S. aureus through a contact-independent mechanism, potentially mediated through the siderophore pyochelin and perhaps additional compounds. This works paves the way to better understanding of interactions between these two bacterial pathogens.IMPORTANCEStaphylococcus aureus is a major nosocomial pathogen responsible for infecting thousands of people each year. Some strains are becoming increasingly resistant to antimicrobials, and consequently new treatments must be sought. This paper describes the characterization of one or more compounds capable of inhibiting S. aureus biofilm formation and may potentially lead to development of a new therapeutic.
Collapse
Affiliation(s)
- Tiffany J. Brandt
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Hayden Skaggs
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Thomas Hundley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
4
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial. PLoS Genet 2025; 21:e1011610. [PMID: 40053555 PMCID: PMC11918324 DOI: 10.1371/journal.pgen.1011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Keim K, Bhattacharya M, Crosby HA, Jenul C, Mills K, Schurr M, Horswill A. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621402. [PMID: 39574578 PMCID: PMC11580920 DOI: 10.1101/2024.11.04.621402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Chronic, non-healing wounds are a leading cause of prolonged patient morbidity and mortality due to biofilm- associated, polymicrobial infections. Staphylococcus aureus and Pseudomonas aeruginosa are the most frequently co-isolated pathogens from chronic wound infections. Competitive interactions between these pathogens contribute to enhanced virulence, persistence, and antimicrobial tolerance. P. aeruginosa utilizes the extracellular proteases LasB, LasA, and AprA to degrade S. aureus surface structures, disrupt cellular physiology, and induce cell lysis, gaining a competitive advantage during co-infection. S. aureus evades P. aeruginosa by employing aggregation mechanisms to form biofilms. The cell wall protein SasG is implicated in S. aureus biofilm formation by facilitating intercellular aggregation upon cleavage by an extracellular protease. We have previously shown that proteolysis by a host protease can induce aggregation. In this study, we report that P. aeruginosa proteases LasA, LasB, and AprA cleave SasG to induce S. aureus aggregation. We demonstrate that SasG contributes to S. aureus biofilm formation in response to interactions with P. aeruginosa proteases by quantifying aggregation, SasG degradation, and proteolytic kinetics. Additionally, we assess the role of SasG in influencing S. aureus biofilm architecture during co-infection in vivo, chronic wound co-infections. This work provides further knowledge of some of the principal interactions that contribute to S. aureus persistence within chronic wounds co-infected with P. aeruginosa, and their impact on healing and infection outcomes.
Collapse
Affiliation(s)
- Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Heidi A Crosby
- New England Biolabs, Ipswich, MA, United States of America
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Krista Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Alphabet Health, New York, NY, United States of America
| | - Michael Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Alexander Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
6
|
Yu G, Ge X, Li W, Ji L, Yang S. Interspecific cross-talk: The catalyst driving microbial biosynthesis of secondary metabolites. Biotechnol Adv 2024; 76:108420. [PMID: 39128577 DOI: 10.1016/j.biotechadv.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Microorganisms co-exist and co-evolve in nature, forming intricate ecological communities. The interspecies cross-talk within these communities creates and sustains their great biosynthetic potential, making them an important source of natural medicines and high-value-added chemicals. However, conventional investigations into microbial metabolites are typically carried out in pure cultures, resulting in the absence of specific activating factors and consequently causing a substantial number of biosynthetic gene clusters to remain silent. This, in turn, hampers the in-depth exploration of microbial biosynthetic potential and frequently presents researchers with the challenge of rediscovering compounds. In response to this challenge, the coculture strategy has emerged to explore microbial biosynthetic capabilities and has shed light on the study of cross-talk mechanisms. These elucidated mechanisms will contribute to a better understanding of complex biosynthetic regulations and offer valuable insights to guide the mining of secondary metabolites. This review summarizes the research advances in microbial cross-talk mechanisms, with a particular focus on the mechanisms that activate the biosynthesis of secondary metabolites. Additionally, the instructive value of these mechanisms for developing strategies to activate biosynthetic pathways is discussed. Moreover, challenges and recommendations for conducting in-depth studies on the cross-talk mechanisms are presented.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiaoxuan Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Wanting Li
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Linwei Ji
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
7
|
Arnold E. Non-classical roles of bacterial siderophores in pathogenesis. Front Cell Infect Microbiol 2024; 14:1465719. [PMID: 39372500 PMCID: PMC11449898 DOI: 10.3389/fcimb.2024.1465719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Within host environments, iron availability is limited, which instigates competition for this essential trace element. In response, bacteria produce siderophores, secondary metabolites that scavenge iron and deliver it to bacterial cells via specific receptors. This role in iron acquisition contributes significantly to bacterial pathogenesis, thereby designating siderophores as virulence factors. While prior research has primarily focused on unravelling the molecular mechanisms underlying siderophore biosynthesis, uptake, and iron sequestration, recent investigations have unveiled additional non-iron chelating functions of siderophores. These emerging roles are being consistently shown to support bacterial pathogenesis. In this review, we present the current understanding of siderophores in various roles: acquiring non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS formation, and functioning in class IIb microcins. By integrating recent findings, this review aims to provide an overview of the diverse roles of siderophores in bacterial pathogenesis.
Collapse
|
8
|
Jehangir M, Iqbal MS, Aftab U. Biotransformation of Sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica. Molecules 2024; 29:4226. [PMID: 39275074 PMCID: PMC11396929 DOI: 10.3390/molecules29174226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
This study aimed at the biotransformation of sumatriptan by Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica and the identification of the drug metabolites by liquid chromatography-mass spectrometry. The drug was incubated with the organisms in tryptic soya broth at 37 °C. The broth was filtered and subjected to liquid chromatography-mass spectrometry. The metabolites identified by the use of mass spectral (+ve ion mode) fragmentation patterns were (3-methylphenyl)methanethiol (Bacillus subtilis), 1-(4-amino-3-ethylphenyl)-N-methylmethanesulfonamide (Salmonella enterica subsp. enterica) and 1-{4-amino-3-[(1E)-3-(dimethylamino)prop-1-en-1-yl]phenyl}methanesulfinamide (Salmonella enterica subsp. enterica, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus). These metabolites exhibit high gastrointestinal absorption, no blood-brain barrier permeability (except (3-methylphenyl)methanethiol), a bioavailability score of 0.55 and no inhibitory effect on CYP2C19, CYP2C9, CYP2D6, CYP3A4 or cytochrome P450 1A2 (except (3-methylphenyl)methanethiol), as determined by SwissADME software ver. 2024. The metabolites appear to be more toxic than the parent drug, as suggested by their calculated median lethal dose values. All four organisms under investigation transformed sumatriptan to different chemical substances that were more toxic than the parent drug.
Collapse
Affiliation(s)
- Muhammad Jehangir
- Department of Chemistry, Forman Christian College, Lahore 54600, Pakistan
| | | | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| |
Collapse
|
9
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Jeong GJ, Khan F, Tabassum N, Jo DM, Jung WK, Kim YM. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms. Res Microbiol 2024; 175:104211. [PMID: 38734157 DOI: 10.1016/j.resmic.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
11
|
Fletcher JR, Hansen LA, Martinez R, Freeman CD, Thorns N, Villareal AR, Penningroth MR, Vogt GA, Tyler M, Hines KM, Hunter RC. Commensal-derived short-chain fatty acids disrupt lipid membrane homeostasis in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607382. [PMID: 39185181 PMCID: PMC11343118 DOI: 10.1101/2024.08.12.607382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The role of commensal anaerobic bacteria in chronic respiratory infections is unclear, yet they can exist in abundances comparable to canonical pathogens in vivo. Their contributions to the metabolic landscape of the host environment may influence pathogen behavior by competing for nutrients and creating inhospitable conditions via toxic metabolites. Here, we reveal a mechanism by which the anaerobe-derived short chain fatty acids (SCFAs) propionate and butyrate negatively affect Staphylococcus aureus physiology by disrupting branched chain fatty acid (BCFA) metabolism. In turn, BCFA impairment results in impaired growth, diminished expression of the agr quorum sensing system, as well as increased sensitivity to membrane-targeting antimicrobials. Altered BCFA metabolism also reduces S. aureus fitness in competition with Pseudomonas aeruginosa, suggesting that airway microbiome composition and the metabolites they produce and exchange directly impact pathogen succession over time. The pleiotropic effects of these SCFAs on S. aureus fitness and their ubiquity as metabolites in animals also suggests that they may be effective as sensitizers to traditional antimicrobial agents when used in combination.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27695
| | - Lisa A. Hansen
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Richard Martinez
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Niall Thorns
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Alex R. Villareal
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Matthew Tyler
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, 55455
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, 30602
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| |
Collapse
|
12
|
Eisenbraun EL, Vulpis TD, Prosser BN, Horswill AR, Blackwell HE. Synthetic Peptides Capable of Potent Multigroup Staphylococcal Quorum Sensing Activation and Inhibition in Both Cultures and Biofilm Communities. J Am Chem Soc 2024; 146:15941-15954. [PMID: 38832917 PMCID: PMC11321086 DOI: 10.1021/jacs.4c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The pathogen Staphylococcus epidermidis uses a chemical signaling process, i.e., quorum sensing (QS), to form robust biofilms and cause human infection. Many questions remain about QS in S. epidermidis, as it uses this intercellular communication pathway to both negatively and positively regulate virulence traits. Herein, we report synthetic multigroup agonists and antagonists of the S. epidermidis accessory gene regulator (agr) QS system capable of potent superactivation and complete inhibition, respectively. These macrocyclic peptides maintain full efficacy across the three major agr specificity groups, and their activity can be "mode-switched" from agonist to antagonist via subtle residue-specific structural changes. We describe the design and synthesis of these non-native peptides and demonstrate that they can appreciably decrease biofilm formation on abiotic surfaces, underscoring the potential for agr agonism as a route to block S. epidermidis virulence. Additionally, we show that both the S. epidermidis agonists and antagonists are active in S. aureus, another common pathogen with a related agr system, yet only as antagonists. This result not only revealed one of the most potent agr inhibitors known in S. aureus but also highlighted differences in the mechanisms of agr agonism and antagonism between these related bacteria. Finally, our investigations reveal unexpected inhibitory behavior for certain S. epidermidis agr agonists at sub-activating concentrations, an observation that can be leveraged for the design of future probes with enhanced potencies. Together, these peptides provide a powerful tool set to interrogate the role of QS in S. epidermidis infections and in Staphylococcal pathogenicity in general.
Collapse
Affiliation(s)
- Emma L. Eisenbraun
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Troy D. Vulpis
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Brendan N. Prosser
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
13
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
14
|
Choi SY, Chung IY, Bae HW, Cho YH. Autolysis of Pseudomonas aeruginosa Quorum-Sensing Mutant Is Suppressed by Staphylococcus aureus through Iron-Dependent Metabolism. J Microbiol Biotechnol 2024; 34:795-803. [PMID: 38303126 DOI: 10.4014/jmb.2312.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.
Collapse
Affiliation(s)
- Shin-Yae Choi
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - In-Young Chung
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Hee-Won Bae
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
15
|
Hassan MM, Heins K, Zheng H. Wound Dressing Based on Silver Nanoparticle Embedded Wool Keratin Electrospun Nanofibers Deposited on Cotton Fabric: Preparation, Characterization, Antimicrobial Activity, and Cytocompatibility. ACS APPLIED BIO MATERIALS 2024; 7:2164-2174. [PMID: 38493449 DOI: 10.1021/acsabm.3c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Wool keratin (WK) protein is attractive for wound dressing and biomedical applications due to its excellent biodegradability, cytocompatibility, and wound-healing properties. In this work, WK-based wound dressings were prepared by depositing WK/poly(vinyl alcohol) (PVA) and silver nanoparticle (Ag NP)-embedded WK/PVA composite nanofibrous membranes on cotton fabrics by electrospinning. Ag NPs were biosynthesized by reduction and stabilization with sodium alginate. The formed Ag NPs were characterized by ultraviolet-visible and Fourier transform infrared (FTIR) spectroscopy, and their size was determined by transmission electron microscopy and image analysis. The formed Ag NPs were spherical and had an average diameter of 9.95 nm. The produced Ag NP-embedded WK/PVA composite nanofiber-deposited cotton fabric surface was characterized by FTIR and dynamic contact angle measurements, and the nanofiber morphologies were characterized by scanning electron microscopy. The average diameter of the nanofibers formed by 0.1% Ag NP-embedded WK/PVA solution was 146.7 nm. The antibacterial activity of the surface of cotton fabrics coated with electrospun composite nanofibers was evaluated against the two most common wound-causing pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The cotton fabric coated with 0.1% Ag NP-embedded WK/PVA nanofibers showed very good antibacterial activity against both pathogens, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed good cytocompatibility against L-929 mouse fibroblast cells. However, the increase in Ag NP content in the nanofibers to 0.2% negatively affected the cell viability due to the high release rate of Ag ions. The results achieved show that the developed wound dressing has good potential for wound healing applications.
Collapse
Affiliation(s)
- Mohammad Mahbubul Hassan
- Bioproduct and Fiber Technology Team, Lincoln Research Center, AgResearch Limited, 1365 Springs Road, 7674 Lincoln, Canterbury, New Zealand
| | - Kira Heins
- Bioproduct and Fiber Technology Team, Lincoln Research Center, AgResearch Limited, 1365 Springs Road, 7674 Lincoln, Canterbury, New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Kang D, Xu Q, Kirienko NV. In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores. Microbiol Spectr 2024; 12:e0369323. [PMID: 38311809 PMCID: PMC10913452 DOI: 10.1128/spectrum.03693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
17
|
Alexander AM, Luu JM, Raghuram V, Bottacin G, van Vliet S, Read TD, Goldberg JB. Experimentally evolved Staphylococcus aureus shows increased survival in the presence of Pseudomonas aeruginosa by acquiring mutations in the amino acid transporter, GltT. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001445. [PMID: 38426877 PMCID: PMC10999751 DOI: 10.1099/mic.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.
Collapse
Affiliation(s)
- Ashley M. Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin M. Luu
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Giulia Bottacin
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Quartier Unil-Sorge, 1015 Lausanne, Switzerland
| | - Timothy D. Read
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Zehr EP, Erzen CL, Oshima K, Langouet-Astrie CJ, LaRiviere WB, Shi D, Zhang F, McCollister BD, Windham SL, Rizzo AN, Bastarache JA, Horswill AR, Schmidt EP, Kwiecinski JM, Colbert JF. Bacterial pneumonia-induced shedding of epithelial heparan sulfate inhibits the bactericidal activity of cathelicidin in a murine model. Am J Physiol Lung Cell Mol Physiol 2024; 326:L206-L212. [PMID: 38113313 PMCID: PMC11280675 DOI: 10.1152/ajplung.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Bacterial pneumonia is a common clinical syndrome leading to significant morbidity and mortality worldwide. In the current study, we investigate a novel, multidirectional relationship between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Using an in vivo pneumonia model, we demonstrate that highly sulfated heparan sulfate (HS) oligosaccharides are shed into the airspaces in response to MRSA pneumonia. In vitro, these HS oligosaccharides do not directly alter MRSA growth or gene transcription. However, in the presence of an antimicrobial peptide (cathelicidin), increasing concentrations of HS inhibit the bactericidal activity of cathelicidin against MRSA as well as other nosocomial pneumonia pathogens (Klebsiella pneumoniae and Pseudomonas aeruginosa) in a dose-dependent manner. Surface plasmon resonance shows avid binding between HS and cathelicidin with a dissociation constant of 0.13 μM. These findings highlight a complex relationship in which shedding of airspace HS may hamper host defenses against nosocomial infection via neutralization of antimicrobial peptides. These findings may inform future investigation into novel therapeutic targets designed to restore local innate immune function in patients suffering from primary bacterial pneumonia.NEW & NOTEWORTHY Primary Staphylococcus aureus pneumonia causes pulmonary epithelial heparan sulfate (HS) shedding into the airspace. These highly sulfated HS fragments do not alter bacterial growth or transcription, but directly bind with host antimicrobial peptides and inhibit the bactericidal activity of these cationic polypeptides. These findings highlight a complex local interaction between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of bacterial pneumonia.
Collapse
Affiliation(s)
- Evan P Zehr
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Christopher L Erzen
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Kaori Oshima
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | | | - Wells B LaRiviere
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Deling Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Bruce D McCollister
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Samuel L Windham
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Alicia N Rizzo
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Julie A Bastarache
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
| | - Alexander R Horswill
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| | - Eric P Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | | | - James F Colbert
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
19
|
Will V, Gasser V, Kuhn L, Fritsch S, Heinrichs DE, Schalk IJ. Siderophore specificities of the Pseudomonas aeruginosa TonB-dependent transporters ChtA and ActA. FEBS Lett 2023; 597:2963-2974. [PMID: 37758521 DOI: 10.1002/1873-3468.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Iron is an essential nutrient for the survival and virulence of Pseudomonas aeruginosa. The pathogen expresses at least 15 different iron-uptake pathways, the majority involving small iron chelators called siderophores. P. aeruginosa produces two siderophores, but can also use many produced by other microorganisms. This implies that the bacterium expresses appropriate TonB-dependent transporters (TBDTs) at the outer membrane to import the ferric form of each of the siderophores used. Here, we show that the two α-carboxylate-type siderophores rhizoferrin-Fe and staphyloferrin A-Fe are transported into P. aeruginosa cells by the TBDT ActA. Among the mixed α-carboxylate/hydroxamate-type siderophores, we found aerobactin-Fe to be transported by ChtA and schizokinen-Fe and arthrobactin-Fe by ChtA and another unidentified TBDT. Our findings enhance the understanding of the adaptability of P. aeruginosa and hold significant implications for developing novel strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, Strasbourg Cedex, France
| | - Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
20
|
Mariani F, Galvan EM. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics (Basel) 2023; 12:1164. [PMID: 37508260 PMCID: PMC10376372 DOI: 10.3390/antibiotics12071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Polymicrobial biofilms provide a complex environment where co-infecting microorganisms can behave antagonistically, additively, or synergistically to alter the disease outcome compared to monomicrobial infections. Staphylococcus aureus skin and soft tissue infections (Sa-SSTIs) are frequently reported in healthcare and community settings, and they can also involve other bacterial and fungal microorganisms. This polymicrobial aetiology is usually found in chronic wounds, such as diabetic foot ulcers, pressure ulcers, and burn wounds, where the establishment of multi-species biofilms in chronic wounds has been extensively described. This review article explores the recent updates on the microorganisms commonly found together with S. aureus in SSTIs, such as Pseudomonas aeruginosa, Escherichia coli, Enterococcus spp., Acinetobacter baumannii, and Candida albicans, among others. The molecular mechanisms behind these polymicrobial interactions in the context of infected wounds and their impact on pathogenesis and antimicrobial susceptibility are also revised.
Collapse
Affiliation(s)
- Florencia Mariani
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| | - Estela Maria Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| |
Collapse
|