1
|
Gao H, Sun F, Zhang X, Qiao X, Guo Y. The role and application of Coronin family in human tumorigenesis and immunomodulation. Biochim Biophys Acta Rev Cancer 2025; 1880:189304. [PMID: 40154644 DOI: 10.1016/j.bbcan.2025.189304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The Coronin family, a class of actin-binding proteins involved in the formation and maintenance of cytoskeleton structural stability, is aberrantly expressed in various tumors, including lung, gastric and head and neck cancers. They can regulate tumor cell metabolism and proliferation through RAC-1 and Wnt/β-Catenin signaling pathways and regulate invasion by influencing the PI3K, PAK4, and MT1-MMP signaling pathways and impacting the actin-network dynamics. In recent years, an increasing number of studies have highlighted the crucial roles of the cytoskeleton and immune modulation in the occurrence and development of tumors. The article delves into the Coronin family's pivotal role in tumor immune evasion, highlighting its modulation of neutrophil, T cell, and vesicular transport functions, as well as its interactions with tumorigenesis related organelles such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes. It also summarizes the potential therapeutic applications of the Coronin family in oncology. This review provides valuable insights into the mechanisms through which the Coronin family is implicated in the onset and progression of tumors. It also provides more theoretical foundation for tumor immunotherapy and combination drug therapy.
Collapse
Affiliation(s)
- Huimeng Gao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Fuli Sun
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, China
| | - Xuanyu Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| | - Yan Guo
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| |
Collapse
|
2
|
Lv M, Yu J, Zeng H, Zhao R. Effects of Coronin 2A on prognosis and immune microenvironment in tumor patients: a knowledge map of the novel biomarker via bioinformatics analysis. Discov Oncol 2025; 16:816. [PMID: 40388004 PMCID: PMC12089627 DOI: 10.1007/s12672-025-02694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Recent studies have highlighted the vital role of CORO2A in tumor proliferation, migration, and metastasis. However, its immunological and prognostic significance across various cancers remains poorly understood. METHODS We conducted an analysis of CORO2A expression patterns, prognostic value, and immunological associations across multiple cancers using data from TCGA, Kaplan-Meier Plotter, PrognoScan, TISIDB databases, as well as GEPIA2, TIMER2, and Xiantao Academic Web. Additionally, CORO2A-associated gene enrichment analysis was performed using STRING, GEPIA2, GO, DAVID, and KEGG datasets. RESULTS Our findings revealed elevated CORO2A expression in most cancers compared to corresponding normal tissues. Lower CORO2A expression was associated with longer OS (overall survival), DFS (disease-free survival), RFS (recurrence-free survival), and DMFS (distant metastasis-free survival) in some cancer types, while the opposite trend was observed in others. CORO2A expression showed significant correlations with the abundance of tumor-infiltrating lymphocytes, immunomodulators, chemokines, as well as the infiltration levels of CAF (cancer-associated fibroblasts) and MDSC (myeloid-derived suppressor cells) across various cancers. We also found that the expression of CORO2A closely related to the markers of immune cell in LUAD and LUSC. Enrichment analysis revealed that CORO2A-related genes were primarily involved in actin filament organization, cell leading edge dynamics, actin binding, and pathways related to pathogenic Escherichia coli infection. CONCLUSION Our pan-cancer study provided a relatively comprehensive understanding of the oncogenic roles of CORO2A across different tumor types. We identified CORO2A as a prognostic biomarker and demonstrated its correlation with immune cell infiltration in pan-cancer contexts.
Collapse
Affiliation(s)
- Minghe Lv
- Department of Radiotherapy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingping Yu
- Department of Radiotherapy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Radiotherapy, Changzhou Cancer Hospital, Changzhou, 213032, China
| | - Hongwei Zeng
- Department of Radiotherapy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ruping Zhao
- Department of Radiotherapy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
He D, Li Y, Ma Q, Han L, Tang D, Miao Y. The phase-separating Magnaporthe oryzae MoSpa2 complex organizes actin nucleation centers for plant infection. THE PLANT CELL 2025; 37:koaf097. [PMID: 40315356 PMCID: PMC12124403 DOI: 10.1093/plcell/koaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
The polarized actin cable from the Spitzenkörper at the hyphal tip fuels filamentous growth in diverse biphasic fungal pathogens. This multicomponent complex, featuring the actin nucleator Bni1 and its associated actin regulator, initiates actin polymerization, guiding biphasic fungal growth and host infection. How dynamic assembly of the Spitzenkörper and actin cable is achieved to support filamentous fungi that undergo multistage morphogenesis for host invasion remains unclear. These fungi include Magnaporthe oryzae (M. oryzae), which undergoes a multistage morphological transition during host plant infection. Here, we showed that the M. oryzae scaffolder protein MoSpa2 remodels actin cable networks in space and time by assembling the polarisome complex via phase separation, thereby supporting polarized growth in M. oryzae. Via its N-terminal intrinsically disordered regions, MoSpa2 first stimulates actin cable assembly through multivalent interactions with the MoBni1 nucleator, after which it creates polarized actin cable bundles by association with F-actin and a concurrent inhibition of cofilin-mediated F-actin depolymerization. MoSPA2 mutants exhibit impaired hyphal growth and a reduced ability to infect host plants, underling the significance of this scaffolder. Overall, this work elucidates the fundamental mechanisms underlying fungal morphogenesis, offering the potential for targeted interventions in pathogenesis.
Collapse
Affiliation(s)
- Danxia He
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Yuanbao Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Libo Han
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
4
|
Ho CT, Evans EB, Lukasik K, O'Shaughnessy EC, Shah A, Hsu CH, Temple B, Bear JE, Gupton SL. Coro1A and TRIM67 collaborate in netrin-dependent neuronal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644333. [PMID: 40166342 PMCID: PMC11957122 DOI: 10.1101/2025.03.20.644333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal morphogenesis depends on extracellular guidance cues accurately instructing intracellular cytoskeletal remodeling. Here, we describe a novel role for the actin binding protein Coronin 1A (Coro1A) in neuronal morphogenesis, where it mediates responses to the axon guidance cue netrin-1. We found that Coro1A localizes to growth cones and filopodial structures and is required for netrindependent axon turning, branching, and corpus callosum development. We previously discovered that Coro1A interacts with TRIM67, a brain enriched E3 ubiquitin ligase that interacts with a netrin receptor and is also required for netrin-mediated neuronal morphogenesis. Loss of Coro1A and loss of TRIM67 shared similar phenotypes, suggesting that they may function together in the same netrin pathway. A Coro1A mutant deficient in binding TRIM67 was not able to rescue loss of Coro1A phenotypes, indicating that the interaction between Coro1A and TRIM67 is required for netrin responses. Together, our findings reveal that Coro1A is required for proper neuronal morphogenesis, where it collaborates with TRIM67 downstream of netrin.
Collapse
|
5
|
McCrary DJ, Naismith T, Jansen S. Domain-specific folding of the tandem β-propeller protein Coronin 7 (Coro7) by CCT/TRiC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642617. [PMID: 40161770 PMCID: PMC11952392 DOI: 10.1101/2025.03.11.642617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Chaperonin containing tailless complex polypeptide 1 (CCT) or TCP-1 ring complex (TRiC) plays a central role in maintaining cellular homeostasis by supporting protein folding and damping protein aggregation. Besides the abundant cytoskeletal proteins, actin and tubulin, CCT/TRiC is emerging as an obligate chaperone for WD40 proteins, which are comprised of one or multiple β-propeller domains. To date, only WD40 proteins consisting of a single β-propeller domain have been described as CCT/TRiC substrates. Using a combination of biotin proximity ligation, mass spec analysis and co-immunoprecipitation, we here identify the tandem β-propeller protein, Coronin 7 (Coro7), as a novel CCT/TRiC interactor. Transient knockdown of CCT/TRiC further severely diminished expression of Coro7, suggesting that Coro7 is a bona fide CCT/TRiC substrate. Interestingly, co-immunoprecipitation of truncated Coro7 proteins demonstrated that CCT/TRiC only interacts with the first β-propeller domain of Coro7. In line with this, fusion of a miniTurboID tag to the N- or C-terminus of Coro7 showed significant enrichment of all CCT/TRiC subunits for the first, but not the second β-propeller domain. Similarly, co-immunoprecipitation with individual Coro7 β-propeller domains generated by introduction of a protease cleavage site in full length Coro7, confirmed that CCT/TRiC only binds to the first β-propeller domain. Altogether, our study shows that CCT/TRiC can also function as a chaperone for multi-β-propeller domain proteins, likely by initiating the folding of the first β-propeller domain, which can then help template autonomous folding of consecutive β-propeller domains.
Collapse
Affiliation(s)
- DeHaven J. McCrary
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - Teri Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| |
Collapse
|
6
|
Zhu K, Guo X, Chandrasekaran A, Miao X, Rangamani P, Zhao W, Miao Y. Membrane curvature catalyzes actin nucleation through nano-scale condensation of N-WASP-FBP17. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591054. [PMID: 38712166 PMCID: PMC11071460 DOI: 10.1101/2024.04.25.591054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Actin remodeling is spatiotemporally regulated by surface topographical cues on the membrane for signaling across diverse biological processes. Yet, the mechanism dynamic membrane curvature prompts quick actin cytoskeletal changes in signaling remain elusive. Leveraging the precision of nanolithography to control membrane curvature, we reconstructed catalytic reactions from the detection of nano-scale curvature by sensing molecules to the initiation of actin polymerization, which is challenging to study quantitatively in living cells. We show that this process occurs via topographical signal-triggered condensation and activation of the actin nucleation-promoting factor (NPF), Neuronal Wiskott-Aldrich Syndrome protein (N-WASP), which is orchestrated by curvature-sensing BAR-domain protein FBP17. Such N-WASP activation is fine-tuned by optimizing FBP17 to N-WASP stoichiometry over different curvature radii, allowing a curvature-guided macromolecular assembly pattern for polymerizing actin network locally. Our findings shed light on the intricate relationship between changes in curvature and actin remodeling via spatiotemporal regulation of NPF/BAR complex condensation.
Collapse
|