1
|
Flevaris K, Kotidis P, Kontoravdi C. GlyCompute: towards the automated analysis of protein N-linked glycosylation kinetics via an open-source computational framework. Anal Bioanal Chem 2025; 417:957-972. [PMID: 39322800 PMCID: PMC11782420 DOI: 10.1007/s00216-024-05522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Understanding the complex biosynthetic pathways of glycosylation is crucial for the expanding field of glycosciences. Computer-aided glycosylation analysis has greatly benefited in recent years from the development of tools found in web-based portals and open-source libraries. However, the in silico analysis of cellular glycosylation kinetics is underrepresented in current glycoscience-related tools and databases. This could be partly attributed to the limited accessibility of kinetic models developed using proprietary software and the difficulty in reliably parameterising such models. This work aims to address these challenges by proposing GlyCompute, an open-source framework demonstrating a novel, streamlined approach for the assembly, simulation, and parameterisation of kinetic models of protein N-linked glycosylation. Specifically, given one or more sets of experimentally observed N-glycan structures and their relative abundances, minimum representations of a glycosylation reaction network are generated. The topology of the resulting networks is then used to automatically assemble the material balances and kinetic mechanisms underpinning the mathematical model. To match the experimentally observed relative abundances, a sequential parameter estimation strategy using Bayesian inference is proposed, with stages determined automatically based on the underlying network topology. The proposed framework was tested on a case study involving the simultaneous fitting of the kinetic model to two protein N-linked glycoprofiles produced by the same CHO cell culture, showing good agreement with experimental observations. We envision that GlyCompute could help glycoscientists gain quantitative insights into the effect of enzyme kinetics and their perturbations on experimentally observed glycoprofiles in biomanufacturing and clinical settings.
Collapse
Affiliation(s)
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial, London, SW7 2AZ, UK
- Biopharm Process Research, GSK, Stevenage, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Bennett AR, Lundstrøm J, Chatterjee S, Thaysen-Andersen M, Bojar D. Compositional data analysis enables statistical rigor in comparative glycomics. Nat Commun 2025; 16:795. [PMID: 39824855 PMCID: PMC11748655 DOI: 10.1038/s41467-025-56249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Comparative glycomics data are compositional data, where measured glycans are parts of a whole, indicated by relative abundances. Applying traditional statistical analyses to these data often results in misleading conclusions, such as spurious "decreases" of glycans when other structures increase in abundance, or high false-positive rates for differential abundance. Our work introduces a compositional data analysis framework, tailored to comparative glycomics, to account for these data dependencies. We employ center log-ratio and additive log-ratio transformations, augmented with a scale uncertainty/information model, to introduce a statistically robust and sensitive data analysis pipeline. Applied to comparative glycomics datasets, including known glycan concentrations in defined mixtures, this approach controls false-positive rates and results in reproducible biological findings. Additionally, we present specialized analysis modalities: alpha- and beta-diversity analyze glycan distributions within and between samples, while cross-class glycan correlations shed light on previously undetected interdependencies. These approaches reveal insights into glycome variations that are critical to understanding roles of glycans in health and disease.
Collapse
Affiliation(s)
- Alexander R Bennett
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sayantani Chatterjee
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Urban J, Jin C, Thomsson KA, Karlsson NG, Ives CM, Fadda E, Bojar D. Predicting glycan structure from tandem mass spectrometry via deep learning. Nat Methods 2024; 21:1206-1215. [PMID: 38951670 PMCID: PMC11239490 DOI: 10.1038/s41592-024-02314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
Glycans constitute the most complicated post-translational modification, modulating protein activity in health and disease. However, structural annotation from tandem mass spectrometry (MS/MS) data is a bottleneck in glycomics, preventing high-throughput endeavors and relegating glycomics to a few experts. Trained on a newly curated set of 500,000 annotated MS/MS spectra, here we present CandyCrunch, a dilated residual neural network predicting glycan structure from raw liquid chromatography-MS/MS data in seconds (top-1 accuracy: 90.3%). We developed an open-access Python-based workflow of raw data conversion and prediction, followed by automated curation and fragment annotation, with predictions recapitulating and extending expert annotation. We demonstrate that this can be used for de novo annotation, diagnostic fragment identification and high-throughput glycomics. For maximum impact, this entire pipeline is tightly interlaced with our glycowork platform and can be easily tested at https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.ipynb . We envision CandyCrunch to democratize structural glycomics and the elucidation of biological roles of glycans.
Collapse
Affiliation(s)
- James Urban
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Section of Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Callum M Ives
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Elisa Fadda
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Lundstrøm J, Thomès L, Bojar D. Protocol for constructing glycan biosynthetic networks using glycowork. STAR Protoc 2024; 5:102937. [PMID: 38630592 PMCID: PMC11036093 DOI: 10.1016/j.xpro.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Glycans, present across all domains of life, comprise a wide range of monosaccharides assembled into complex, branching structures. Here, we present an in silico protocol to construct biosynthetic networks from a list of observed glycans using the Python package glycowork. We describe steps for data preparation, network construction, feature analysis, and data export. This protocol is implemented in Python using example data and can be adapted for use with customized datasets. For complete details on the use and execution of this protocol, please refer to Thomès et al.1.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden.
| | - Luc Thomès
- University Lille, CHU Lille, ULR 7364 - RADEME - Maladies RAres du DÉveloppement embryonnaire et du Métabolisme, 59000 Lille, France
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|
5
|
Lundstrøm J, Bojar D. The evolving world of milk oligosaccharides: Biochemical diversity understood by computational advances. Carbohydr Res 2024; 537:109069. [PMID: 38402731 DOI: 10.1016/j.carres.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Milk oligosaccharides, complex carbohydrates unique to mammalian milk, play crucial roles in infant nutrition and immune development. This review explores their biochemical diversity, tracing the evolutionary paths that have led to their variation across different species. We highlight the intersection of nutrition, biology, and chemistry in understanding these compounds. Additionally, we discuss the latest computational methods and analytical techniques that have revolutionized the study of milk oligosaccharides, offering insights into their structural complexity and functional roles. This brief but essential review not only aims to provide a deeper understanding of milk oligosaccharides but also discuss the road toward their potential applications.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
6
|
Lundstrøm J, Urban J, Thomès L, Bojar D. GlycoDraw: a python implementation for generating high-quality glycan figures. Glycobiology 2023; 33:927-934. [PMID: 37498172 PMCID: PMC10859633 DOI: 10.1093/glycob/cwad063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
Glycans are essential to all scales of biology, with their intricate structures being crucial for their biological functions. The structural complexity of glycans is communicated through simplified and unified visual representations according to the Symbol Nomenclature for Glycans (SNFGs) guidelines adopted by the community. Here, we introduce GlycoDraw, a Python-native implementation for high-throughput generation of high-quality, SNFG-compliant glycan figures with flexible display options. GlycoDraw is released as part of our glycan analysis ecosystem, glycowork, facilitating integration into existing workflows by enabling fully automated annotation of glycan-related figures and thus assisting the analysis of e.g. differential abundance data or glycomics mass spectra.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
| | - James Urban
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
| | - Luc Thomès
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Västra Götaland, Sweden
| |
Collapse
|
7
|
Lundstrøm J, Urban J, Bojar D. Decoding glycomics with a suite of methods for differential expression analysis. CELL REPORTS METHODS 2023; 3:100652. [PMID: 37992708 PMCID: PMC10753297 DOI: 10.1016/j.crmeth.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Glycomics, the comprehensive profiling of all glycan structures in samples, is rapidly expanding to enable insights into physiology and disease mechanisms. However, glycan structure complexity and glycomics data interpretation present challenges, especially for differential expression analysis. Here, we present a framework for differential glycomics expression analysis. Our methodology encompasses specialized and domain-informed methods for data normalization and imputation, glycan motif extraction and quantification, differential expression analysis, motif enrichment analysis, time series analysis, and meta-analytic capabilities, synthesizing results across multiple studies. All methods are integrated into our open-source glycowork package, facilitating performant workflows and user-friendly access. We demonstrate these methods using dedicated simulations and glycomics datasets of N-, O-, lipid-linked, and free glycans. Differential expression tests here focus on human datasets and cancer vs. healthy tissue comparisons. Our rigorous approach allows for robust, reliable, and comprehensive differential expression analyses in glycomics, contributing to advancing glycomics research and its translation to clinical and diagnostic applications.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
| | - James Urban
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|