1
|
Sagheer U, Shu J, Yu H, Ren X, Haroon K, Majeed U, Xu C, Zhang F, Xie H, Li Z. Protein glycopatterns for natural regulation of microbiota in lung adenocarcinoma. Int J Biol Macromol 2025; 306:141542. [PMID: 40023429 DOI: 10.1016/j.ijbiomac.2025.141542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/22/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Despite medical advancements, lung cancer remains a leading cause of mortality, necessitating a deeper understanding. Recent studies show that protein glycopatterns and lung microbiome are crucial in lung cancer development, but their relationship in adenocarcinoma remains unexplored. Therefore, this study evaluated protein glycopatterns and microbial changes between lung adenocarcinoma (n = 70) and paracancerous tissues (n = 70) through lectin microarrays and 16S rDNA sequencing. Further, we explored the impact of protein glycopatterns against a decreased abundant microbiota using extracted glycoproteins reflecting high expression protein glycopatterns observed in lung adenocarcinoma tissues. The results demonstrated a significant up-regulation of protein glycopatterns in tumor tissues, including WGA binding to multivalent Sia/(GlcNAc)n (P = 0.0078) and Jacalin binding to T/Tn antigens (P = 0.0313). Meanwhile, two bacterial species of the genus Sphingomonas showed a significant decrease (P < 0.01) in adenocarcinoma as compared to paracancerous tissue. Interestingly, adhesion assay results showed glycoproteins (25-100 μg/ml) with multivalent Sia and (GlcNAc)n structures extracted by WGA-magnetic particle conjugates significantly reduce (P < 0.0001) Sphingomonas mucosissima adhesion and toxicity to lung cancer cells (A-549). The findings indicated that protein glycopatterns could inhibit cancer-instigating oncomicrobes to intercept cancer progression, offering insights into molecular mechanisms driving disease progression and aiding to develop new treatment strategies.
Collapse
Affiliation(s)
- Usman Sagheer
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kashmala Haroon
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Usman Majeed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Xu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hailong Xie
- Institute of Cancer Research, University of South China, Hengyang, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Zhang Y, Zhou Z, Zhang Z, Liu Y, Ji W, Wang J, Wang K, Li Q. Lentinan mitigates ulcerative colitis via the IL-22 pathway to repair the compromised mucosal barrier and enhance antimicrobial defense. Int J Biol Macromol 2025; 307:141784. [PMID: 40054799 DOI: 10.1016/j.ijbiomac.2025.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/15/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Ulcerative colitis (UC) involves chronic, complex pathology of the intestinal mucosa. Current treatments are limited in efficacy and associated with adverse effects, highlighting the urgent need for improved therapeutic options. Lentinan (LNT), a polysaccharide drug commonly used in clinical immune modulation therapies, shows potential for UC treatment, though its specific targets and mechanisms remain unclear. In this study, LNT administration effectively mitigated DSS-induced colitis in mice, enhanced mucosal barrier function and antimicrobial defense. Specifically, LNT modulated the balance between tissue-resident and infiltrating macrophages, thereby improving pathogen clearance and enhancing the immunological barrier. Notably, we identified a novel effect of LNT in regulating the macrophage Dectin-1-ILC3 axis to increase IL-22 secretion. This led to the modulation of epithelial O-glycan fucosylation, antimicrobial peptides, and epithelial stem cells, thereby strengthening antimicrobial defenses and the physicochemical barrier. Neutralization with anti-IL-22 antibodies diminished the therapeutic effect of LNT in UC, underscoring the critical role of IL-22 in LNT-mediated treatment. Overall, this study highlights the potential of LNT as a novel therapeutic agent for UC, offering new insights into its molecular mechanisms and clinical application.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Zhihong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zeming Zhang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yan Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China.
| |
Collapse
|
3
|
Zhou Q, Lei L, Cheng J, Chen J, Du Y, Zhang X, Li Q, Li C, Deng H, Wong CC, Zhuang B, Li G, Bai X. Microbiota-induced S100A11-RAGE axis underlies immune evasion in right-sided colon adenomas and is a therapeutic target to boost anti-PD1 efficacy. Gut 2025; 74:214-228. [PMID: 39251326 PMCID: PMC11874379 DOI: 10.1136/gutjnl-2024-332193] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Tumourigenesis in right-sided and left-sided colons demonstrated distinct features. OBJECTIVE We aimed to characterise the differences between the left-sided and right-sided adenomas (ADs) representing the early stage of colonic tumourigenesis. DESIGN Single-cell and spatial transcriptomic datasets were analysed to reveal alterations between right-sided and left-sided colon ADs. Cells, animal experiments and clinical specimens were used to verify the results. RESULTS Single-cell analysis revealed that in right-sided ADs, there was a significant reduction of goblet cells, and these goblet cells were dysfunctional with attenuated mucin biosynthesis and defective antigen presentation. An impairment of the mucus barrier led to biofilm formation in crypts and subsequent bacteria invasion into right-sided ADs. The regions spatially surrounding the crypts with biofilm occupation underwent an inflammatory response by lipopolysaccharide (LPS) and an apoptosis process, as revealed by spatial transcriptomics. A distinct S100A11+ epithelial cell population in the right-sided ADs was identified, and its expression level was induced by bacterial LPS and peptidoglycan. S100A11 expression facilitated tumour growth in syngeneic immunocompetent mice with increased myeloid-derived suppressor cells (MDSC) but reduced cytotoxic CD8+ T cells. Targeting S100A11 with well-tolerated antagonists of its receptor for advanced glycation end product (RAGE) (Azeliragon) significantly impaired tumour growth and MDSC infiltration, thereby boosting the efficacy of anti-programmed cell death protein 1 therapy in colon cancer. CONCLUSION Our findings unravelled that dysfunctional goblet cells and consequential bacterial translocation activated the S100A11-RAGE axis in right-sided colon ADs, which recruits MDSCs to promote immune evasion. Targeting this axis by Azeliragon improves the efficacy of immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Qiming Zhou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Linhan Lei
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhong Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyou Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyang Du
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuehua Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Li
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuangen Li
- Institute of Chinese Medical Sciences, University of Macao, Taipa, Macao
| | - Haijun Deng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Baoxiong Zhuang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaowu Bai
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Jandl B, Dighe S, Baumgartner M, Makristathis A, Gasche C, Muttenthaler M. Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies. Gastroenterology 2024; 167:1098-1112.e5. [PMID: 38876174 DOI: 10.1053/j.gastro.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Jian C, Yinhang W, Jing Z, Zhanbo Q, Zefeng W, Shuwen H. Escherichia coli on colorectal cancer: A two-edged sword. Microb Biotechnol 2024; 17:e70029. [PMID: 39400440 PMCID: PMC11472651 DOI: 10.1111/1751-7915.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.
Collapse
Affiliation(s)
- Chu Jian
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wu Yinhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Zhuang Jing
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wang Zefeng
- Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
- ASIR (Institute ‐ Association of intelligent systems and robotics)Rueil‐MalmaisonFrance
| |
Collapse
|
6
|
Zhai Z, Liu Y, Niu K, Zeng W, Wang R, Guo X, Lin C, Hu L. Oleanolic acid alleviate intestinal inflammation by inhibiting Takeda G-coupled protein receptor (TGR) 5 mediated cell apoptosis. Food Funct 2024; 15:1963-1976. [PMID: 38275075 DOI: 10.1039/d3fo04882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Oleanolic acid (OA) is a bioactive compound present in plant-based foods known for its beneficial impact on gastrointestinal health, specifically in alleviating diarrhea. Nonetheless, the underlying mechanisms by which OA mitigates gut epithelial damage have yet to be elucidated. In this study, OA significantly markedly ameliorated adverse effects induced by Dextran Sulfate Sodium (DSS), including weight loss and epithelial morphological damage in a murine model. Remarkably, compared to normal mice, standalone administration of OA had no discernible impact on the animals. Concurrently, we identified a significant up-regulation in the expression levels of TGR5 and BAX in the intestines of DSS-exposed mice, coupled with a decline in Bcl2 expression. Correlation analyses revealed a robust association between TGR5 and BAX expression. Oral administration of OA efficaciously counteracted these alterations. To probe the role of TGR5 in cellular apoptosis, further, a lentivirus transfection approach was utilized to induce TGR5 overexpression in intestinal epithelial cells (IPEC-J2). RNA sequencing indicated that TGR5 overexpression significantly influenced biological processes, particularly in modulating cellular activation and intercellular adhesion, in contrast to the control group cells. Functional assays substantiated that TGR5 overexpression compromised cell viability and accelerated apoptosis. Notably, OA treatment in TGR5-overexpressed cells restored cell viability, suppressed TGR5 and BAX expression, and augmented Bcl2 expression. In sum, our data suggest that OA mitigates intestinal epithelial apoptosis and bolsters cellular proliferation by downregulating TGR5. This research provides valuable insights into the prospective utility of OA as a functional food supplement or adjunctive therapeutic agent for enhancing gastrointestinal health.
Collapse
Affiliation(s)
- Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Yichun Liu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Kaimin Niu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Weirong Zeng
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Ruxia Wang
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Xiongchang Guo
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Chong Lin
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Linfang Hu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| |
Collapse
|
7
|
Berberolli S, Wu M, Goycoolea FM. The Rosetta Stone of interactions of mucosa and associated bacteria in the gastrointestinal tract. Curr Opin Gastroenterol 2024; 40:1-6. [PMID: 37983559 PMCID: PMC10715687 DOI: 10.1097/mog.0000000000000992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
PURPOSE OF REVIEW Gut microbiota-mucosa-epithelial cells co-exist in an intricate three-way relationship that underpins gut homeostasis, and ultimately influences health and disease conditions. The O-glycans of mucin glycoproteins have been uncovered as a centrepiece of this system, although understanding the phenomena at play at the molecular level has been challenging and subject to significant traction over the last years. The purpose of this review is to discuss the recent advances in the phenomena that mediate microbiota and mucus multidirectional interactions in the human gut. RECENT FINDINGS The mucus biosynthesis and degradation by both commensal and pathogenic bacteria is under tight regulation and involves hundreds of carbohydrate-active enzymes (CAZy) and transporters. The fucosylation of O-glycans from mucin-2 seems to dictate binding by pathogenic species and to influence their virulence. Less clear is the influence of O-glycans in quorum sensing and biofilm formation. We have reviewed the advances in the in vitro models available to recreate the phenomena that capture the physiological context of the intestinal environment, emphasising models that include mucus and other aspects relevant to the physiological context. SUMMARY The recent findings highlight the importance of merging advances in analytical (glycans analysis) and omics techniques along with original robust in vitro models that enable to deconstruct part of the high complexity of the living gut and expand our understanding of the microbes-mucosa relationships and their significance in health and disease.
Collapse
Affiliation(s)
- Serena Berberolli
- School of Food Science and Nutrition, University of Leeds. Leeds, LS6 4RG, United Kingdom
| | | | | |
Collapse
|