1
|
Zhu JY, Chen M, Mu WJ, Luo HY, Li Y, Li S, Yan LJ, Li RY, Yin MT, Li X, Chen HM, Guo L. Exercise-induced anti-obesity effects in male mice generated by a FOXO1-KLF10 reinforcing loop promoting adipose lipolysis. Nat Commun 2025; 16:3111. [PMID: 40169574 PMCID: PMC11961606 DOI: 10.1038/s41467-025-58467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
Exercise combats obesity and metabolic disorders, but the underlying mechanism is incompletely understood. KLF10, a transcription factor involved in various biological processes, has an undefined role in adipose tissue and obesity. Here, we show that exercise facilitates adipocyte-derived KLF10 expression via SIRT1/FOXO1 pathway. Adipocyte-specific knockout of KLF10 blunts exercise-promoted white adipose browning, energy expenditure, fat loss, glucose tolerance in diet-induced obese male mice. Conversely, adipocyte-specific transgenic expression of KLF10 in male mice enhanced the above metabolic profits induced by exercise. Mechanistically, KLF10 interacts with FOXO1 and facilitates the recruitment of KDM4A to form a ternary complex on the promoter regions of Pnpla2 and Lipe genes to promote these key lipolytic genes expression by demethylating H3K9me3 on their promoters, which facilitates lipolysis to defend against obesity in male mice. As a downstream effector responding to exercise, adipose KLF10 could act as a potential target in the fight against obesity.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
2
|
Fekete ÉM, Gomez J, Ghobrial M, Kaminski K, Muskus PC, Boychuk CR, Guixa AH, Vazirabad I, Xie M, Ganiyu A, Golosova D, Mathieu NM, Wang YB, Lu KT, Wackman KK, Brozoski DT, Mouradian GC, Hodges MR, Segar JL, Grobe JL, Sigmund CD, Nakagawa P. Definitive Evidence for the Identification and Function of Renin-Expressing Cholinergic Neurons in the Nucleus Ambiguus. Hypertension 2025; 82:282-292. [PMID: 39618396 PMCID: PMC11735315 DOI: 10.1161/hypertensionaha.124.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The importance of the brain renin-angiotensin system in cardiovascular function is well accepted. However, not knowing the precise source of renin in the brain has been a limitation toward a complete understanding of how the brain renin-angiotensin system operates. METHODS Highly sensitive in situ hybridization techniques and conditional knockout mice were used to address the location and function of renin in the brainstem. RESULTS We identified novel renin-expressing cholinergic neurons in the nucleus ambiguus (NuAm), a major vagal cardioinhibitory center in the brainstem. The expression of renin-angiotensin system genes was relatively abundant in the NuAm, implying that angiotensin II might mediate an important regulatory role in this nucleus and other regions with neural connectivity to the NuAm. Then, we generated conditional knockout mice lacking the classical renin isoform (Ren-aChAT-KO), specifically in cholinergic neurons. Ablation of Ren-a in cholinergic neurons abrogated renin expression in the NuAm. Moreover, studies using radiotelemetry, heart rate variability analyses, and pharmacological approaches revealed that the parasympathetic nervous system is depressed in Ren-aChAT-KO males while augmented in the Ren-aChAT-KO females. Subsequently, transcriptomic approaches were used to infer putative genes and signaling pathways regulated by renin within the NuAm. CONCLUSIONS This study revealed that renin in cholinergic neurons plays a fundamental role in preserving autonomic balance and cardiovascular homeostasis in a sex-dependent manner. These findings define the NuAm as an endogenous, local source of renin with biological function and serve as conclusive evidence for the presence and functionality of the brain renin-angiotensin system.
Collapse
Affiliation(s)
- Éva M. Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Mina Ghobrial
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Kathren Kaminski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Carie R. Boychuk
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Ana Hantke Guixa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Ibrahim Vazirabad
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Michelle Xie
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Azeez Ganiyu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Daria Golosova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Yoko B. Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
3
|
Yin XY, Wen DT, Li HY, Gao ZQ, Gao Y, Hao W. Endurance exercise attenuates Gαq-RNAi induced hereditary obesity and skeletal muscle dysfunction via improving skeletal muscle Srl/MRCC-I pathway in Drosophila. Sci Rep 2024; 14:28207. [PMID: 39548180 PMCID: PMC11568267 DOI: 10.1038/s41598-024-79415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
G protein alpha q subunit (Gαq) can binds to the G protein-coupled receptor (GPCR) for signaling and is closely related to lipid metabolism. Endurance exercise is an effective means of combating acquired obesity and its complications, but the mechanisms by which endurance exercise modulates hereditary obesity and its complications are unknown. In this study, we achieved knockdown of Gαq in drosophila adipose tissue and skeletal muscle by constructing the Gαq-UAS-RNAi/Ppl-Gal4 and Gαq-UAS-RNAi/Mef2-GAl4 systems. Drosophila were subjected a three-week endurance exercise intervention, and changes in relevant indicators were detected and observed by RT-PCR, ELISA, oil red staining, immunofluorescence staining, and transmission electron microscopy. The results showed that knockdown of Gαq in both adipose tissue and skeletal muscle induced a significant increase in triglycerides accompanied by a decrease in rapid climbing ability, a decrease in Superoxide Dismutase (SOD) activity level, and a decrease in Mitochondrial respiratory chain complexI (MRCC I) content in Drosophila whole body and skeletal muscle, and down-regulated the expression of the G protein alpha q subunit (Gαq), the skeletal muscle myosin heavy chain expression gene (Mhc), mitochondrial biogenesis gene Spargal(the PGC-1alpha homologue in Drosophila). Endurance exercise significantly improved the triglyceride levels in the whole body and skeletal muscle of drosophila with Gαq knockdown in adipose tissue and skeletal muscle, as well as their ability to climb, increased SOD activity level and MRCCI content level, and up-regulated the expression of Gαq, Mhc, and Spargal(Srl). Thus, the present findings suggest that genetic defects in the Gαq gene in adipose and skeletal muscle tissues induce hereditary obesity and skeletal muscle dysfunction, and that endurance exercise attenuates this hereditary obesity and concomitant skeletal muscle dysfunction in drosophila by improving skeletal muscle fiber contractile proteins, mitochondrial function and function, and antioxidant capacity via mediating the Gαq/Mhc, Gαq/Srl/MRCC-I, and Gαq/SOD pathways.
Collapse
Affiliation(s)
- Xin-yuan Yin
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - Deng-tai Wen
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - Han-yu Li
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - Zhao-qing Gao
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - YuZe Gao
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| | - WeiJia Hao
- College of Physical Education, Ludong University, Yantai, 264025 Shandong People’s Republic of China
| |
Collapse
|
4
|
Lawton SB, Wagner VA, Nakagawa P, Segar JL, Sigmund CD, Morselli LL, Grobe JL. Angiotensin in the Arcuate: Mechanisms Integrating Cardiometabolic Control: The 2022 COH Mid-Career Award for Research Excellence. Hypertension 2024; 81:2209-2217. [PMID: 39315447 PMCID: PMC11483214 DOI: 10.1161/hypertensionaha.124.20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The American Heart Association has identified obesity as a primary impediment to ongoing improvements in cardiovascular diseases, including hypertension. Although drugs, exercise, diets, and surgeries can each cause weight loss, few subjects maintain a reduced weight over the long term. Dysfunctional integrative control (ie, adaptation) of resting metabolic rate (RMR) appears to underlie this failed weight maintenance, yet the neurobiology of physiological and pathophysiological RMR control is poorly understood. Here, we review recent insights into the cellular and molecular control of RMR by Ang-II (angiotensin II) signaling within the arcuate nucleus of the hypothalamus. Within a unique subset of agouti-related peptide neurons, AT1R (Ang-II type 1 receptors) are implicated in the integrative control of RMR. Furthermore, a spontaneous G protein signal switch of AT1R within this neuron type appears to underlie the pathogenesis of RMR adaptation by qualitatively changing the cellular response to AT1R activation from a β-arrestin-1/Gαi (heterotrimeric G protein, α i subtype)-mediated inhibitory response to a Gαq (heterotrimeric G protein, α q subtype)-mediated stimulatory response. We conclude that therapeutic approaches to obesity are likely hampered by the plasticity of the signaling mechanisms that mediate the normal integrative control of energy balance. The same stimulus that would increase RMR in the normal physiological state may decrease RMR during obesity due to qualitative changes in second-messenger coupling. Understanding the mechanisms that regulate interactions between receptors such as AT1R and its various second messenger signaling cascades will provide novel insights into the pathogenesis of RMR adaptation and potentially point toward new therapeutic approaches for obesity and hypertension.
Collapse
Affiliation(s)
- Samuel B.R. Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Valerie A. Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lisa L. Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Medicine, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
5
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
6
|
Ritter ML, Wagner VA, Balapattabi K, Opichka MA, Lu KT, Wackman KK, Reho JJ, Keen HL, Kwitek AE, Morselli LL, Geurts AM, Sigmund CD, Grobe JL. Krüppel-like factor 4 in transcriptional control of the three unique isoforms of Agouti-related peptide in mice. Physiol Genomics 2024; 56:265-275. [PMID: 38145289 PMCID: PMC10866620 DOI: 10.1152/physiolgenomics.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/15/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023] Open
Abstract
Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.
Collapse
Affiliation(s)
- McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Genetics Graduate Program, University of Iowa, Iowa City, Iowa, United States
| | - Kirthikaa Balapattabi
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Megan A Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Henry L Keen
- Bioinformatics Division, Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lisa L Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|