1
|
Yuan J, Dong K, Wu H, Zeng X, Liu X, Liu Y, Dai J, Yin J, Chen Y, Guo Y, Luo W, Liu N, Sun Y, Zhang S, Su B. Single-nucleus multi-omics analyses reveal cellular and molecular innovations in the anterior cingulate cortex during primate evolution. CELL GENOMICS 2024; 4:100703. [PMID: 39631404 DOI: 10.1016/j.xgen.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
The anterior cingulate cortex (ACC) of the human brain is involved in higher-level cognitive functions such as emotion and self-awareness. We generated profiles of human and macaque ACC gene expression and chromatin accessibility at single-nucleus resolution. We characterized the conserved patterns of gene expression, chromatin accessibility, and transcription factor binding in different cell types. Combining the published mouse data, we discovered the molecular identities and cell-lineage origin of the primate von Economo neurons (VENs). Our in vitro and in vivo experiments identified a group of primate-shared and human-specific VEN marker genes, such as PCSK6, ADAMTSL3, and CDHR3, potentially contributing to VEN morphogenesis. We demonstrated that the human-specific sequence changes account for the cellular and functional innovations in the ACC during primate evolution and human origin. These findings provide new insights into understanding the cellular composition and molecular regulation of ACC and its evolutionary role in shaping human-owned higher cognitive skills.
Collapse
Affiliation(s)
- Jiamiao Yuan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kangning Dong
- School of Mathematics, Renmin University of China, Beijing 100872, China; NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixu Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xingyan Liu
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Jichao Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongjie Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenhao Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Na Liu
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
2
|
Yang S, Hu J, Chen Y, Zhang Z, Wang J, Zhu G. DCC, a potential target for controlling fear memory extinction and hippocampal LTP in male mice receiving single prolonged stress. Neurobiol Stress 2024; 32:100666. [PMID: 39224830 PMCID: PMC11366904 DOI: 10.1016/j.ynstr.2024.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe stress-dependent psychiatric disorder characterized by impairment of fear memory extinction; however, biological markers to determine impaired fear memory extinction in PTSD remain unclear. In male mice with PTSD-like behaviors elicited by single prolonged stress (SPS), 19 differentially expressed proteins in the hippocampus were identified compared with controls. Among them, a biological macromolecular protein named deleted in colorectal cancer (DCC) was highly upregulated. Specific overexpression of DCC in the hippocampus induced similar impairment of long-term potentiation (LTP) and fear memory extinction as observed in SPS mice. The impairment of fear memory extinction in SPS mice was improved by inhibiting the function of hippocampal DCC using a neutralizing antibody. Mechanistic studies have shown that knocking down or inhibiting μ-calpain in hippocampal neurons increased DCC expression and induced impairment of fear memory extinction. Additionally, SPS-triggered impairment of hippocampal LTP and fear memory extinction could be rescued through activation of the Rac1-Pak1 signaling pathway. Our study provides evidence that calpain-mediated regulation of DCC controls hippocampal LTP and fear memory extinction in SPS mice, which likely through activation of the Rac1-Pak1 signaling pathway.
Collapse
Affiliation(s)
- Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Shouchun Road 300, Hefei, 230061, China
| | - Jiamin Hu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Yuzhuang Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Shouchun Road 300, Hefei, 230061, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| |
Collapse
|
3
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. Development 2024; 151:dev202733. [PMID: 39190555 PMCID: PMC11385328 DOI: 10.1242/dev.202733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.
Collapse
Affiliation(s)
- Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Morgane Mialon
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Mélissa Cizeron
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Jean-Louis Bessereau
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Berangere Pinan-Lucarre
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Taye N, Redhead C, Hubmacher D. Secreted ADAMTS-like proteins as regulators of connective tissue function. Am J Physiol Cell Physiol 2024; 326:C756-C767. [PMID: 38284126 DOI: 10.1152/ajpcell.00680.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The extracellular matrix (ECM) determines functional properties of connective tissues through structural components, such as collagens, elastic fibers, or proteoglycans. The ECM also instructs cell behavior through regulatory proteins, including proteases, growth factors, and matricellular proteins, which can be soluble or tethered to ECM scaffolds. The secreted a disintegrin and metalloproteinase with thrombospondin type 1 repeats/motifs-like (ADAMTSL) proteins constitute a family of regulatory ECM proteins that are related to ADAMTS proteases but lack their protease domains. In mammals, the ADAMTSL protein family comprises seven members, ADAMTSL1-6 and papilin. ADAMTSL orthologs are also present in the worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster. Like other matricellular proteins, ADAMTSL expression is characterized by tight spatiotemporal regulation during embryonic development and early postnatal growth and by cell type- and tissue-specific functional pleiotropy. Although largely quiescent during adult tissue homeostasis, reexpression of ADAMTSL proteins is frequently observed in the context of physiological and pathological tissue remodeling and during regeneration and repair after injury. The diverse functions of ADAMTSL proteins are further evident from disorders caused by mutations in individual ADAMTSL proteins, which can affect multiple organ systems. In addition, genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) in ADAMTSL genes to complex traits, such as lung function, asthma, height, body mass, fibrosis, or schizophrenia. In this review, we summarize the current knowledge about individual members of the ADAMTSL protein family and highlight recent mechanistic studies that began to elucidate their diverse functions.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Charlene Redhead
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|