1
|
Hubbi S, Hao S, Epps J, Ferreri NR. Tumour necrosis factor-alpha at the intersection of renal epithelial and immune cell function. J Physiol 2025; 603:2915-2936. [PMID: 40349332 DOI: 10.1113/jp286756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
This review explores the roles of tumour necrosis factor-alpha (TNF) in kidney physiology and pathology. TNF, produced by renal epithelial cells, regulates glucose, electrolyte, water and urea transport by modulating key transporters such as sodium-glucose co-transporter-2 (SGLT2), sodium-potassium-chloride cotransporter 2 (NKCC2), sodium chloride cotransporter (NCC), epithelial sodium channel (ENaC), aquaporin-2 (AQP2) and urea transporters. Under non-inflammatory conditions, TNF functions as a regulatory 'brake' on water and solute transport, particularly by attenuating NKCC2 and AQP2 activity. Disruption of these actions, coupled with increased salt intake, shifts mice from being salt-resistant to salt-sensitive, thereby altering their blood pressure. In autoimmune diseases, chronic kidney disease (CKD), hypertension with renal inflammation, and sepsis, TNF drives immune responses and disease progression. Although mechanisms underlying tubular epithelial cell (TEC)-immune cell interactions remain unclear, emerging evidence indicates that the spatial organization of immune responses in the kidney is associated with distinct TEC signature phenotypes. Hypertonicity- and NFAT5 (i.e. nuclear factor of activated T cells 5)-driven TNF production in TECs and T lymphocytes may influence immune cell communication by affecting co-stimulatory molecule expression and ENaC activity on macrophages and dendritic cells. Although TNF is generally pathogenic in renal diseases, its inhibition does not always confer protection because its effects on endoplasmic reticulum stress, ion transport, vascular smooth muscle and immune cells are influenced by distinct cellular sources and signalling mechanisms through TNF receptors 1 and 2. Anti-TNF therapies are crucial for treating chronic inflammatory diseases and may also aid in preventing the progression of acute kidney injury to CKD. A more complete understanding of the role of TNF in immunophysiological responses may enable the development of more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sara Hubbi
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Jarred Epps
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|
2
|
Sadasivam M, Noel S, Lee K, Gharaie S, Rabb H, Hamad ARA. Renal Tubular Epithelial Cell-Derived IL-7 Drives Expansion and Protective Effects of Double-Negative T Cells in Acute Kidney Injury. Immunol Invest 2025:1-14. [PMID: 39912351 DOI: 10.1080/08820139.2025.2462537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND Previous studies have demonstrated that double-negative (DN) αβ T cells play an important role in immune responses during ischemic acute kidney injury (AKI). Here, we investigate the role of γ-chain cytokines in driving DN T cell proliferation in steady state and AKI, focusing on IL-2, IL-7, and IL-15. METHODS We assessed DN T cell proliferation in vitro in response to IL-2, IL-7, and IL-15, with co-culture experiments using renal tubular epithelial cells (RTECs) and IL-7 blockade. In vivo, wild-type and IL-7r knockout mice were studied to evaluate the impact of IL-7 on DN T cell expansion and kidney function during AKI. Human RTECs confirmed the relevance of these findings. RESULTS All three cytokines promoted DN T cell proliferation in vitro, with IL-7 inducing the most robust expansion. Co-culture experiments showed RTECs as a key IL-7 source, and blockade reduced DN T cell expansion. In vivo, IL-7 complexes administered to wild-type mice increased DN T cells and selectively expanded the PD-1+ subset. IL-7 deficiency worsened renal outcomes during AKI. Human RTECs activated peripheral human DN T cells in vitro. CONCLUSION These results establish IL-7 as pivotal for DN T cell expansion and highlight RTECs' role in DN T cell homeostasis.
Collapse
Affiliation(s)
- Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sanjeev Noel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungho Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sepideh Gharaie
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Liu Z, Dai B, Bao J, Pan Y. T cell metabolism in kidney immune homeostasis. Front Immunol 2024; 15:1498808. [PMID: 39737193 PMCID: PMC11684269 DOI: 10.3389/fimmu.2024.1498808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Kidney immune homeostasis is intricately linked to T cells. Inappropriate differentiation, activation, and effector functions of T cells lead to a spectrum of kidney disease. While executing immune functions, T cells undergo a series of metabolic rewiring to meet the rapid energy demand. The key enzymes and metabolites involved in T cell metabolism metabolically and epigenetically modulate T cells' differentiation, activation, and effector functions, thereby being capable of modulating kidney immune homeostasis. In this review, we first summarize the latest advancements in T cell immunometabolism. Second, we outline the alterations in the renal microenvironment under certain kidney disease conditions. Ultimately, we highlight the metabolic modulation of T cells within kidney immune homeostasis, which may shed light on new strategies for treating kidney disease.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiwen Bao
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
4
|
Bao Y, Shan Q, Lu K, Yang Q, Liang Y, Kuang H, Wang L, Hao M, Peng M, Zhang S, Cao G. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis. J Pharm Anal 2024; 14:100933. [PMID: 39247486 PMCID: PMC11377145 DOI: 10.1016/j.jpha.2024.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 09/10/2024] Open
Abstract
Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system (UPS), autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (ER, unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including DNA, protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, ER stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.
Collapse
Affiliation(s)
- Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030600, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| |
Collapse
|
5
|
Moore KH, Erman EN, Traylor AM, Esman SK, Jiang Y, LaFontaine JR, Zmijewska A, Lu Y, Soliman RH, Agarwal A, George JF. Cognate antigen-independent differentiation of resident memory T cells in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F839-F854. [PMID: 38450434 PMCID: PMC11386978 DOI: 10.1152/ajprenal.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.
Collapse
Affiliation(s)
- Kyle H Moore
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elise N Erman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer R LaFontaine
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yan Lu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|