1
|
Zhang P, Liu X, Liu Y, Zhu H, Zheng C, Ling Q, Yan F, He Q, Zhu H, Yuan T, Yang B. VCP Promotes Cholangiocarcinoma Development by Mediating BAP1 Ubiquitination-Dependent Degradation. Cancer Sci 2025. [PMID: 40122668 DOI: 10.1111/cas.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Cholangiocarcinoma (CCA), recognized for its high malignancy, has been an enormous challenge due to lacking effective treatment therapy over the past decades. Recently, the targeted therapies, such as Pemigatinib and Ivosidenib, have provided new treatment options for patients carrying fibroblast growth factor receptor (FGFR) and isocitrate dehydrogenase 1/2 (IDH1/2) mutations, but only ~30% of patients harbor these mutants; it is urgent to explore novel targets and therapeutic therapies. The frequent downregulation of BAP1 has been observed in CCA, and the low expression of BAP1 is closely related to the poor prognosis of CCA. However, there are no effective interventions to re-activate BAP1 protein; blocking its degradation may provide a feasible strategy for BAP1-downregulation CCA treatment. In this study, we demonstrated the tumor-suppressive roles of BAP1 in CCA and identified VCP functions as the key upstream regulator mediated by BAP1 protein homeostasis. Mechanistically, VCP binds to BAP1 and promotes the latter's ubiquitination degradation via the ubiquitin-proteasome pathway, thus promoting cell proliferation and inhibiting cell apoptosis. Moreover, we found that VCP inhibitors inhibited CCA cell growth and promoted cell apoptosis by blocking BAP1 ubiquitination degradation. Collectively, our findings not only provided a novel mechanism underlying the aberrant low expression of BAP1 in CCA but also verified the anti-tumor effect of VCP inhibitors in CCA, offering a novel therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Peiying Zhang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangning Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongdao Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Churun Zheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Qiao S, Li X, Yang S, Hua H, Mao C, Lu W. Investigating the PI3K/AKT/mTOR axis in Buzhong Yiqi Decoction's anti-colorectal cancer activity. Sci Rep 2025; 15:8238. [PMID: 40065054 PMCID: PMC11893811 DOI: 10.1038/s41598-025-89018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Buzhong Yiqi Decoction (BZYQD) is a traditional Chinese medicine renowned for its anti-colorectal cancer (CRC) properties. However, the bioactive components and mechanisms of BZYQD against CRC remain unknown. In this study, LC-MS was used to analyze the chemical composition of BZYQD. Next, the network pharmacology and molecular docking was used to investigate the core components and targets of BZYQD against CRC. Finally, we experimentally validated the potential mechanism of BZYQD against CRC through in vitro studies. Our results identified 26 chemical components in the BZYQD; 75 "hithubs" targets were screened by network pharmacology, and mainly involving pathways such as including pathways in cancer, P13K-Akt signaling pathway, proteoglycans in cancer, kaposi sarcoma-associated herpesvirus, and lipid and atherosclerosis signaling pathways. Based on the number of "hithubs" targets in the key pathways, the two most critical targets including AKT1 and PIK3CA were selected. The component-target network results indicated that astragaloside IV, gancaonin A, quercetin, poricoic acid A, and licoisoflavanone are key anti-CRC components in BZYQD. Molecular docking showed a strong binding affinity between these components and targets. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway emerged as the primary target of BZYQD. Further in vitro studies confirmed that BZYQD's anti-CRC activity is mediated through the PI3K/AKT/mTOR axis and influences macrophage polarization. BZYQD exerts its therapeutic effects on CRC through multiple components, targets, and pathways. Our study elucidates the effective components and molecular mechanisms of BZYQD in CRC treatment and provides preliminary validation through molecular docking and experimental studies.
Collapse
Affiliation(s)
- Song Qiao
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Xiaolong Li
- Radiotherapy 1 Ward, Shaanxi Provincial Cancer Hospital, No. 309, Yanta West Road, Yanta District, Xi'an, Shaanxi, China
| | - Shangzhen Yang
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Hua Hua
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Chengtao Mao
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China
| | - Wanling Lu
- Department of Oncology and Hematology, Xijing 986 Hospital, No. 269 Youyi East Road, Beilin District, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
3
|
Cheng C, Zha Q, Sun L, Cui T, Guo X, Xing C, Chen Z, Ji C, Liang S, Tao S, Chu J, Wu C, Chu Q, Gu X, Zhang N, Fu Y, Deng S, Zhu Y, Wang J, Liu Y, Liu L. VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8 +T cells function in the HCC microenvironment. Signal Transduct Target Ther 2025; 10:26. [PMID: 39848960 PMCID: PMC11758394 DOI: 10.1038/s41392-024-02120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
CD8+T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8+T cells suppression in hepatocellular carcinoma (HCC). Our findings reveal that VCP suppresses the activation, expansion, and cytotoxic capacity of CD8+T cells both in vitro and in vivo, significantly contributing to the immunosuppressive nature of the TME. Mechanistically, VCP stabilizes the expression of glycerol-3-phosphate dehydrogenase 1-like protein (GPD1L), leading to the accumulation of glycerol-3-phosphate (G3P), a downstream metabolite of GPD1L. The accumulated G3P diffuses into the TME and directly interacts with SRC-family tyrosine kinase LCK, a critical component of the T-cell receptor (TCR) signaling pathway in CD8+T cells. This interaction heightens the phosphorylation of Tyr505, a key inhibitory residue, ultimately reducing LCK activity and impairing downstream TCR signaling. Consequently, CD8+T cells lose their functional capacity, diminishing their ability to fight against HCC. Importantly, we demonstrated that targeting VCP in combination with anti-PD1 therapy significantly suppresses HCC tumor growth and restores the anti-tumor function of CD8+T cells, suggesting synergistic therapeutic potential. These findings highlight a previously unrecognized mechanism involving VCP and G3P in suppressing T-cell-mediated immunity in the TME, positioning VCP as a promising upstream target for enhancing immunotherapy in HCC.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Xinyu Guo
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changjian Xing
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Zhengxiang Chen
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shuhang Liang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shengwei Tao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Junhui Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Xuetian Gu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Ning Zhang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shumin Deng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yitong Zhu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| |
Collapse
|
4
|
Lee DM, Kim IY, Lee HJ, Seo MJ, Cho MY, Lee HI, Yoon G, Ji JH, Park SS, Jeong SY, Choi EK, Choi YH, Yun CO, Yeo M, Kim E, Choi KS. Akt enhances the vulnerability of cancer cells to VCP/p97 inhibition-mediated paraptosis. Cell Death Dis 2024; 15:48. [PMID: 38218922 PMCID: PMC10787777 DOI: 10.1038/s41419-024-06434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Valosin-containing protein (VCP)/p97, an AAA+ ATPase critical for maintaining proteostasis, emerges as a promising target for cancer therapy. This study reveals that targeting VCP selectively eliminates breast cancer cells while sparing non-transformed cells by inducing paraptosis, a non-apoptotic cell death mechanism characterized by endoplasmic reticulum and mitochondria dilation. Intriguingly, oncogenic HRas sensitizes non-transformed cells to VCP inhibition-mediated paraptosis. The susceptibility of cancer cells to VCP inhibition is attributed to the non-attenuation and recovery of protein synthesis under proteotoxic stress. Mechanistically, mTORC2/Akt activation and eIF3d-dependent translation contribute to translational rebound and amplification of proteotoxic stress. Furthermore, the ATF4/DDIT4 axis augments VCP inhibition-mediated paraptosis by activating Akt. Given that hyperactive Akt counteracts chemotherapeutic-induced apoptosis, VCP inhibition presents a promising therapeutic avenue to exploit Akt-associated vulnerabilities in cancer cells by triggering paraptosis while safeguarding normal cells.
Collapse
Affiliation(s)
- Dong Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - In Young Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hong Jae Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Min Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hae In Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Seok Soon Park
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Hyeon Choi
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute Science and Technology, Ulsan, South Korea.
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|