1
|
Li J, Fan L, Yang T, Zhang P, Ruan H, Li Y, Wang T, Zhang Y, Zhang F, Ren H. AtFH5 recruits and transports the arabinogalactan protein AGP23 to maintain the tip growth of pollen tube. Proc Natl Acad Sci U S A 2024; 121:e2410607121. [PMID: 39585983 PMCID: PMC11626185 DOI: 10.1073/pnas.2410607121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Actin cytoskeleton drives the targeted transport of cell wall components to sustain the tip growth of pollen tubes for double fertilization; however, the underlying mechanism remains largely unknown. Arabidopsis formin 5 (AtFH5), an actin-nucleating protein, localizes at secretory vesicles and mediates actin polymerization-based vesicle trafficking in pollen. Here, we demonstrate that AtFH5 determines the recruitment and transport of cell wall components in AtFH5-labeled vesicles during the tip growth of pollen tubes. Through a screen of interacting proteins of AtFH5, we identify many cell wall-related proteins, with arabinogalactan protein 23 (AGP23) occupying the highest frequency. AtFH5 interacts with AGP23 via its N-terminal extracellular domain (ECD) and jointly regulate the pollen germination and tube growth process. Further observations reveal that AGP23 co-localizes with AtFH5 at moving vesicles, germination sites, and pollen tube tips, suggesting that AGP23 is delivered by AtFH5-labeled vesicles. Deletion of the ECD of AtFH5 interrupts the dynamic localization and cell-wall connection of AGP23 in pollen grains and tubes. Cytological and genetic evidence shows that AGP23 and AtFH5 work in the same pathway to modulate cell wall composition. Together, our data uncover a role of formin in directing the sorting and deposition of cell wall components via secretory vesicle trafficking during pollen germination and tube growth.
Collapse
Affiliation(s)
- Jiang Li
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University, Zhuhai519087, China
| | - Ligang Fan
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University, Zhuhai519087, China
| | - Ting Yang
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University, Zhuhai519087, China
| | - Puzhi Zhang
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University, Zhuhai519087, China
| | - Huaqiang Ruan
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University, Zhuhai519087, China
| | - Yihao Li
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University, Zhuhai519087, China
| | - Ting Wang
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
| | - Yi Zhang
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
| | - Fanfan Zhang
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
| | - Haiyun Ren
- Department of Biology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing100875, China
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Biotechnology Joint Laboratory, Beijing Normal University, Zhuhai519087, China
| |
Collapse
|
2
|
Chen W, Xu J, Chen J, Wang JF, Zhang S, Pei ZM. Acidic Stress Induces Cytosolic Free Calcium Oscillation, and an Appropriate Low pH Helps Maintain the Circadian Clock in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3107. [PMID: 39520026 PMCID: PMC11548685 DOI: 10.3390/plants13213107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca2+ signals in response to acidic stress remain largely unexplored. The experimentally induced stimulus may elicit spikes in cytosolic free Ca2+ concentration ([Ca2+]i) spikes or complex [Ca2+]i oscillations that persist for 20 min over a long-term of 24 h or even several days within the plant cytosol and chloroplast. This study investigated the increase in [Ca2+]i under a gradient of low pH stress ranging from pH 3.0 to 6.0. Notably, the peak of [Ca2+]i elevation was lower at pH 4.0 than at pH 3.0 during the initial 8 h, while other pH levels did not significantly increase [Ca2+]i compared to low acidic stress conditions. Lanthanum chloride (LaCl3) can effectively suppress the influx of [Ca2+]i from the apoplastic to the cytoplasm in plants under acid stress, with no discernible difference in intracellular calcium levels observed in Arabidopsis. Following 8 h of acid treatment in the darkness, the intracellular baseline Ca2+ levels in Arabidopsis were significantly elevated when exposed to low pH stress. A moderately low pH, specifically 4.0, may function as a spatial-temporal input into the circadian clock system. These findings suggest that acid stimulation can exert a continuous influence on intracellular calcium levels, as well as plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Xu
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia Chen
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun-Feng Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Wang X, Li T, Xu J, Zhang F, Liu L, Wang T, Wang C, Ren H, Zhang Y. Distinct functions of microtubules and actin filaments in the transportation of the male germ unit in pollen. Nat Commun 2024; 15:5448. [PMID: 38937444 PMCID: PMC11211427 DOI: 10.1038/s41467-024-49323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.
Collapse
Affiliation(s)
- Xiangfei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Tonghui Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Jiuting Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Lifang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Beijing Normal University, 519087, Zhuhai, China.
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
4
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
5
|
Chocano-Coralla EJ, Vidali L. Myosin XI, a model of its conserved role in plant cell tip growth. Biochem Soc Trans 2024; 52:505-515. [PMID: 38629612 DOI: 10.1042/bst20220783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.
Collapse
Affiliation(s)
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, U.S.A
| |
Collapse
|