1
|
Armoundas AA, Ahmad FS, Attia ZI, Doudesis D, Khera R, Kyriakoulis KG, Stergiou GS, Tang WHW. Controversy in Hypertension: Pro-Side of the Argument Using Artificial Intelligence for Hypertension Diagnosis and Management. Hypertension 2025; 82:929-944. [PMID: 40091745 DOI: 10.1161/hypertensionaha.124.22349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Hypertension presents the largest modifiable public health challenge due to its high prevalence, its intimate relationship to cardiovascular diseases, and its complex pathogenesis and pathophysiology. Low awareness of blood pressure elevation and suboptimal hypertension diagnosis serve as the major hurdles in effective hypertension management. Advances in artificial intelligence in hypertension have permitted the integrative analysis of large data sets including omics, clinical (with novel sensor and wearable technologies), health-related, social, behavioral, and environmental sources, and hold transformative potential in achieving large-scale, data-driven approaches toward personalized diagnosis, treatment, and long-term management. However, although the emerging artificial intelligence science may advance the concept of precision hypertension in discovery, drug targeting and development, patient care, and management, its clinical adoption at scale today is lacking. Recognizing that clinical implementation of artificial intelligence-based solutions need evidence generation, this opinion statement examines a clinician-centric perspective of the state-of-art in using artificial intelligence in the management of hypertension and puts forward recommendations toward equitable precision hypertension care.
Collapse
Affiliation(s)
- Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital and Broad Institute, Massachusetts Institute of Technology, Boston (A.A.A.)
| | - Faraz S Ahmad
- Division of Cardiology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL (F.S.A.)
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (Z.I.A.)
| | - Dimitrios Doudesis
- British Heart Foundation (BHF) Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (D.D.)
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine (R.K.)
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT (R.K.)
| | - Konstantinos G Kyriakoulis
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Athens, Greece (K.G.K., G.S.S.)
| | - George S Stergiou
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Athens, Greece (K.G.K., G.S.S.)
| | - W H Wilson Tang
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH (W.H.W.T.)
| |
Collapse
|
2
|
Lin M, Guo J, Gu Z, Tang W, Tao H, You S, Jia D, Sun Y, Jia P. Machine learning and multi-omics integration: advancing cardiovascular translational research and clinical practice. J Transl Med 2025; 23:388. [PMID: 40176068 PMCID: PMC11966820 DOI: 10.1186/s12967-025-06425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The global burden of cardiovascular diseases continues to rise, making their prevention, diagnosis and treatment increasingly critical. With advancements and breakthroughs in omics technologies such as high-throughput sequencing, multi-omics approaches can offer a closer reflection of the complex physiological and pathological changes in the body from a molecular perspective, providing new microscopic insights into cardiovascular diseases research. However, due to the vast volume and complexity of data, accurately describing, utilising, and translating these biomedical data demands substantial effort. Researchers and clinicians are actively developing artificial intelligence (AI) methods for data-driven knowledge discovery and causal inference using various omics data. These AI approaches, integrated with multi-omics research, have shown promising outcomes in cardiovascular studies. In this review, we outline the methods for integrating machine learning, one of the most successful applications of AI, with omics data and summarise representative AI models developed that leverage various omics data to facilitate the exploration of cardiovascular diseases from underlying mechanisms to clinical practice. Particular emphasis is placed on the effectiveness of using AI to extract potential molecular information to address current knowledge gaps. We discuss the challenges and opportunities of integrating omics with AI into routine diagnostic and therapeutic practices and anticipate the future development of novel AI models for wider application in the field of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingzhi Lin
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Jiuqi Guo
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Zhilin Gu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Wenyi Tang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Hongqian Tao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Dalin Jia
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China.
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
3
|
Ray A, Yang C, Stelloh C, Tutaj M, Liu P, Liu Y, Qiu Q, Auer PL, Lin CW, Widlansky ME, Geurts AM, Cowley AW, Liang M, Kwitek AE, Greene AS, Rao S. Chromatin State Maps of Blood Pressure-Relevant Renal Segments Reveal Potential Regulatory Role for SNPs. Hypertension 2025; 82:476-488. [PMID: 39723540 DOI: 10.1161/hypertensionaha.124.23873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Hypertension or elevated blood pressure (BP) is a worldwide clinical challenge and the leading primary risk factor for kidney dysfunctions, heart failure, and cerebrovascular disease. The kidney is a central regulator of BP by maintaining sodium-water balance. Multiple genome-wide association studies revealed that BP is a heritable quantitative trait, modulated by several genetic, epigenetic, and environmental factors. The SNPs identified in genome-wide association studies predominantly (>95%) reside within noncoding genomic regions, making it difficult to understand how they regulate BP. Given the central role of the kidney in regulating BP, we hypothesized that chromatin-accessible regions in renal tissue would be enriched for BP-associated single nucleotide polymorphisms. METHODS We manually dissected 2 important kidney segments that maintain the sodium-water balance: proximal tubules and medullary thick ascending limbs from the human and rat kidneys. To delineate their chromatin and transcriptomic profiles, we performed the assay for transposase-accessible chromatin and RNA sequencing, respectively. RESULTS The chromatin accessibility maps revealed the shared and unique cis-regulatory elements that modulate the chromatin accessibility in proximal tubule and medullary thick ascending limbs of humans and rats. We developed a visualization tool to compare the cross-species epigenomic maps to identify potential regulatory targets for hypertension pathogenesis. We also identified a significant enrichment of BP-associated single nucleotide polymorphisms (1064 for human proximal tubule and 1172 for human medullary thick ascending limbs) within accessible chromatin regions of both segments, including rs1173771 and rs1421811 at the NPR3 locus and rs1800470 at the TGFb1 locus. CONCLUSIONS Collectively, this study lays a foundation for interrogating how intergenic single nucleotide polymorphisms may regulate polygenic traits such as BP.
Collapse
Affiliation(s)
- Atrayee Ray
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Chun Yang
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Cary Stelloh
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Monika Tutaj
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Pengyuan Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Yong Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Qiongzi Qiu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Paul L Auer
- The Institute for Health and Equity (P.L.A.), Medical College of Wisconsin, Milwaukee
| | - Chien-Wei Lin
- Division of Biostatistics, Data Science Institute (C.-W.L.), Medical College of Wisconsin, Milwaukee
| | | | - Aron M Geurts
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Anne E Kwitek
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | | | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
- Department of Pediatrics, Section of Hematology/Oncology/Transplantation (S.R.), Medical College of Wisconsin, Milwaukee
- Department of Cell Biology, Neurobiology, and Anatomy (S.R.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
4
|
Yaacov O, Mathiyalagan P, Berk-Rauch HE, Ganesh SK, Zhu L, Hoffmann TJ, Iribarren C, Risch N, Lee D, Chakravarti A. Identification of the Molecular Components of Enhancer-Mediated Gene Expression Variation in Multiple Tissues Regulating Blood Pressure. Hypertension 2024; 81:1500-1510. [PMID: 38747164 PMCID: PMC11168860 DOI: 10.1161/hypertensionaha.123.22538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Inter-individual variation in blood pressure (BP) arises in part from sequence variants within enhancers modulating the expression of causal genes. We propose that these genes, active in tissues relevant to BP physiology, can be identified from tissue-level epigenomic data and genotypes of BP-phenotyped individuals. METHODS We used chromatin accessibility data from the heart, adrenal, kidney, and artery to identify cis-regulatory elements (CREs) in these tissues and estimate the impact of common human single-nucleotide variants within these CREs on gene expression, using machine learning methods. To identify causal genes, we performed a gene-wise association test. We conducted analyses in 2 separate large-scale cohorts: 77 822 individuals from the Genetic Epidemiology Research on Adult Health and Aging and 315 270 individuals from the UK Biobank. RESULTS We identified 309, 259, 331, and 367 genes (false discovery rate <0.05) for diastolic BP and 191, 184, 204, and 204 genes for systolic BP in the artery, kidney, heart, and adrenal, respectively, in Genetic Epidemiology Research on Adult Health and Aging; 50% to 70% of these genes were replicated in the UK Biobank, significantly higher than the 12% to 15% expected by chance (P<0.0001). These results enabled tissue expression prediction of these 988 to 2875 putative BP genes in individuals of both cohorts to construct an expression polygenic score. This score explained ≈27% of the reported single-nucleotide variant heritability, substantially higher than expected from prior studies. CONCLUSIONS Our work demonstrates the power of tissue-restricted comprehensive CRE analysis, followed by CRE-based expression prediction, for understanding BP regulation in relevant tissues and provides dual-modality supporting evidence, CRE and expression, for the causality genes.
Collapse
Affiliation(s)
- Or Yaacov
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY, USA
| | - Prabhu Mathiyalagan
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY, USA
- Benthos Prime Central, Houston, TX, USA
| | - Hanna E. Berk-Rauch
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine & Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Luke Zhu
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas J. Hoffmann
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Carlos Iribarren
- Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Neil Risch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Dongwon Lee
- Department of Pediatrics, Division of Nephrology, Boston Children’s Hospital, Boston & Harvard Medical School, Boston, MA, USA
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Yang ML, Xu C, Gupte T, Hoffmann TJ, Iribarren C, Zhou X, Ganesh SK. Sex-specific genetic architecture of blood pressure. Nat Med 2024; 30:818-828. [PMID: 38459180 PMCID: PMC11797078 DOI: 10.1038/s41591-024-02858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
The genetic and genomic basis of sex differences in blood pressure (BP) traits remain unstudied at scale. Here, we conducted sex-stratified and combined-sex genome-wide association studies of BP traits using the UK Biobank resource, identifying 1,346 previously reported and 29 new BP trait-associated loci. Among associated loci, 412 were female-specific (Pfemale ≤ 5 × 10-8; Pmale > 5 × 10-8) and 142 were male-specific (Pmale ≤ 5 × 10-8; Pfemale > 5 × 10-8); these sex-specific loci were enriched for hormone-related transcription factors, in particular, estrogen receptor 1. Analyses of gene-by-sex interactions and sexually dimorphic effects identified four genomic regions, showing female-specific associations with diastolic BP or pulse pressure, including the chromosome 13q34-COL4A1/COL4A2 locus. Notably, female-specific pulse pressure-associated loci exhibited enriched acetylated histone H3 Lys27 modifications in arterial tissues and a female-specific association with fibromuscular dysplasia, a female-biased vascular disease; colocalization signals included Chr13q34: COL4A1/COL4A2, Chr9p21: CDKN2B-AS1 and Chr4q32.1: MAP9 regions. Sex-specific and sex-biased polygenic associations of BP traits were associated with multiple cardiovascular traits. These findings suggest potentially clinically significant and BP sex-specific pleiotropic effects on cardiovascular diseases.
Collapse
Affiliation(s)
- Min-Lee Yang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chang Xu
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Trisha Gupte
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Hoffmann
- Department of Epidemiology & Biostatistics, and Institute for Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|