1
|
Aguilera P, Aguilera A. R-loop homeostasis in genome dynamics, gene expression and development. Curr Opin Genet Dev 2025; 92:102325. [PMID: 40043343 DOI: 10.1016/j.gde.2025.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 05/13/2025]
Abstract
R-loops are double-edge swords with functional roles that in many cases constitute a threat to genome integrity and gene expression with relevant consequences in cell physiology and development. A number of factors have evolved to control R-loop homeostasis by acting at the levels of R-loop prevention, resolution, or the repair of the R-loop-induced DNA lesion. Deciphering the role of R-loops generated under different stresses and the plethora of processes controlling their homeostasis has become crucial to evaluate their impact in cell physiology and the biological significance of their association with development and disease. Here, we review publications of the last 2 years that help understand their biological role.
Collapse
Affiliation(s)
- Paula Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla - CSIC, Av. Américo Vespucio 24, 41092 Seville, Spain. https://twitter.com/Aguilera_P_90
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla - CSIC, Av. Américo Vespucio 24, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
2
|
Xie Y, Clarke BP, Xie D, Mei M, Bhat P, Hill PS, Angelos AE, Çağatay T, Haider M, Collier SE, Chambers MG, Aksenova V, Dasso M, Fontoura BMA, Ren Y. Structures and mRNP remodeling mechanism of the TREX-2 complex. Structure 2025; 33:566-582.e6. [PMID: 39862860 PMCID: PMC11890942 DOI: 10.1016/j.str.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/18/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
mRNAs are packaged with proteins into messenger ribonucleoprotein complexes (mRNPs) in the nucleus. mRNP assembly and export are of fundamental importance for all eukaryotic gene expression. Before export to the cytoplasm, mRNPs undergo dynamic remodeling governed by the DEAD-box helicase DDX39B (yeast Sub2). DDX39B/Sub2 primarily functions in the nucleus and leaves the mRNP prior to export through the nuclear pore complex; however, the underlying mechanisms remain elusive. Here, we identify the conserved TREX-2 complex as the long-sought factor that facilitates DDX39B/Sub2 to complete the mRNP remodeling cycle. Our crystallographic and cryoelectron microscopy (cryo-EM) analyses demonstrate that TREX-2 modulates the activities of DDX39B/Sub2 through multiple interactions. Critically, a conserved "trigger loop" from TREX-2 splits the two RecA domains of DDX39B/Sub2 and promotes the removal of DDX39B/Sub2 from mRNP. Our findings suggest that TREX-2 coordinates with DDX39B/Sub2 and the human export receptor NXF1-NXT1 (yeast Mex67-Mtr2) to complete the final steps of nuclear mRNP assembly.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Dongqi Xie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Menghan Mei
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Alexia E Angelos
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Tolga Çağatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mariam Haider
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Scott E Collier
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Melissa G Chambers
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Seidler JF, Sträßer K. Understanding nuclear mRNA export: Survival under stress. Mol Cell 2024; 84:3681-3691. [PMID: 39366354 DOI: 10.1016/j.molcel.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Nuclear messenger RNA (mRNA) export is vital for cell survival under both physiological and stress conditions. To cope with stress, cells block bulk mRNA export while selectively exporting stress-specific mRNAs. Under physiological conditions, nuclear adaptor proteins recruit the mRNA exporter to the mRNA for export. By contrast, during stress conditions, the mRNA exporter is likely directly recruited to stress-specific mRNAs at their transcription sites to facilitate selective mRNA export. In this review, we summarize our current understanding of nuclear mRNA export. Importantly, we explore insights into the mechanisms that block bulk mRNA export and facilitate transcript-specific mRNA export under stress, highlighting the gaps that still need to be filled.
Collapse
Affiliation(s)
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany.
| |
Collapse
|
4
|
Palazzo AF, Qiu Y, Kang YM. mRNA nuclear export: how mRNA identity features distinguish functional RNAs from junk transcripts. RNA Biol 2024; 21:1-12. [PMID: 38091265 PMCID: PMC10732640 DOI: 10.1080/15476286.2023.2293339] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The division of the cellular space into nucleoplasm and cytoplasm promotes quality control mechanisms that prevent misprocessed mRNAs and junk RNAs from gaining access to the translational machinery. Here, we explore how properly processed mRNAs are distinguished from both misprocessed mRNAs and junk RNAs by the presence or absence of various 'identity features'.
Collapse
Affiliation(s)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|