1
|
Shao X, Wu T, Li M, Zheng M, Lin H, Qi X. Enterococcus faecalis Exerts Neuroprotective Effects via the Vagus Nerve in a Mouse Model of Parkinson's Disease. Mol Neurobiol 2025; 62:7875-7891. [PMID: 39954164 DOI: 10.1007/s12035-025-04741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease worldwide. Current treatment methods for PD are unable to halt disease progression. The gut microbiota contributes to the neurodevelopment of PD; however, the gut-brain connections and underlying neural bases that regulate this complex behavior are not yet clear. Enterococcus faecalis (EF) is a common commensal bacterium of the gut and a common pathogen associated with hospital-acquired infections. Here, we demonstrated the significant therapeutic effects of a non-pathogenic strain of EF (EF ATCC19433) on PD. In this study, we established a mouse model of PD by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that EF treatment alleviated behavioral impairment, dopaminergic neuronal loss, blood-brain barrier damage, and neuroinflammation induced by MPTP in the mice. Additionally, 16S rRNA sequencing revealed that dysbiosis of PD-related microbial communities induced by MPTP was reversed by EF treatment. Moreover, EF treatment relieved gastrointestinal dysfunction in the mice. The therapeutic efficacy of EF in MPTP-induced PD mice is markedly diminished when the activity of EF is lost. Further mechanistic studies indicated that the neuroprotective effects of EF in PD were associated with the vagus nerve pathway. Following the surgical severance of the vagus nerve through subdiaphragmatic vagotomy, the protective effects of EF on PD were markedly diminished. Our study suggests that EF can alleviate neurofunctional impairments and gastrointestinal disorders associated with PD, indicating that gut-derived microbes influence brain function through the vagus nerve pathway.
Collapse
Affiliation(s)
- Xian Shao
- Department of Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, Zhejiang, China
| | - Tao Wu
- School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Mengyun Li
- Department of Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, Zhejiang, China
| | - Matao Zheng
- Department of Neurosurgery, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Healthy Science Center, The Affiliated Lihuili Hospital of Ningbo University, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
2
|
Ohno N, Karube F, Fujiyama F. Volume electron microscopy for genetically and molecularly defined neural circuits. Neurosci Res 2025; 214:48-55. [PMID: 38914208 DOI: 10.1016/j.neures.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
The brain networks responsible for adaptive behavioral changes are based on the physical connections between neurons. Light and electron microscopy have long been used to study neural projections and the physical connections between neurons. Volume electron microscopy has recently expanded its scale of analysis due to methodological advances, resulting in complete wiring maps of neurites in a large volume of brain tissues and even entire nervous systems in a growing number of species. However, structural approaches frequently suffer from inherent limitations in which elements in images are identified solely by morphological criteria. Recently, an increasing number of tools and technologies have been developed to characterize cells and cellular components in the context of molecules and gene expression. These advancements include newly developed probes for visualization in electron microscopic images as well as correlative integration methods for the same elements across multiple microscopic modalities. Such approaches advance our understanding of interactions between specific neurons and circuits and may help to elucidate novel aspects of the basal ganglia network involving dopamine neurons. These advancements are expected to reveal mechanisms for processing adaptive changes in specific neural circuits that modulate brain functions.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Japan.
| | - Fuyuki Karube
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Fumino Fujiyama
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
3
|
Drumond-Bock AL, Blankenship HE, Pham KD, Carter KA, Freeman WM, Beckstead MJ. Parallel Gene Expression Changes in Ventral Midbrain Dopamine and GABA Neurons during Normal Aging. eNeuro 2025; 12:ENEURO.0107-25.2025. [PMID: 40360281 PMCID: PMC12121937 DOI: 10.1523/eneuro.0107-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The consequences of aging can vary dramatically between different brain regions and cell types. In the ventral midbrain, dopaminergic neurons develop physiological deficits with normal aging that likely convey susceptibility to neurodegeneration. While nearby GABAergic neurons are thought to be more resilient, decreased GABA signaling in other areas nonetheless correlates with age-related cognitive decline and the development of degenerative diseases. Here, we used two novel cell type-specific translating ribosome affinity purification models to elucidate the impact of healthy brain aging on the molecular profiles of dopamine and GABA neurons in the ventral midbrain. By analyzing differential gene expression from young adult (7-10 months) and old (21-24 months) mice, we detected commonalities in the aging process in both neuronal types, including increased inflammatory responses and upregulation of pro-survival pathways. Both cell types also showed downregulation of genes involved in synaptic connectivity and plasticity. Intriguingly, genes involved in serotonergic synthesis were upregulated with age in GABA neurons and not dopamine-releasing cells. In contrast, dopaminergic neurons showed alterations in genes connected with mitochondrial function and calcium signaling, which were markedly downregulated in male mice. Sex differences were detected in both neuron types, but in general were more prominent in dopamine neurons. Multiple sex effects correlated with the differential prevalence for neurodegenerative diseases such as Parkinson's and Alzheimer's seen in humans. In summary, these results provide insight into the connection between non-pathological aging and susceptibility to neurodegenerative diseases involving the ventral midbrain, and identify molecular phenotypes that could underlie homeostatic maintenance during normal aging.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Harris E Blankenship
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Kevin D Pham
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Willard M Freeman
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma 73104
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
4
|
Pesti B, Langa X, Kumpesa N, Valdeolivas A, Sultan M, Rottenberg S, Hahn K. Mini Review: Spatial Transcriptomics to Decode the Central Nervous System. Toxicol Pathol 2025:1926233251325204. [PMID: 40119776 DOI: 10.1177/01926233251325204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Spatial transcriptomics (ST) is revolutionizing our understanding of the central nervous system (CNS) by providing spatially resolved gene expression data. This mini review explores the impact of ST on CNS research, particularly in neurodegenerative diseases like Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. We describe two foundational ST methods: sequencing-based and imaging-based. Key studies are reviewed highlighting the power of ST data sets to map transcriptomes to disease-specific histomorphology, elucidate molecular mechanisms of regional and cellular vulnerability, integrate single-cell data with tissue mapping, and reveal receptor-ligand interactions. Despite current challenges like data interpretation and resolution limits, ST holds promise for identifying novel drug targets, evaluating their therapeutic potential, and bridging gaps between animal models and human studies to advance development of CNS-targeting compounds.
Collapse
Affiliation(s)
- Benedek Pesti
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Xavi Langa
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Nadine Kumpesa
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Marc Sultan
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Kerstin Hahn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
5
|
Liang M, Chu L, Yue Z. New Multiomic Studies Shed Light on Cellular Diversity and Neuronal Susceptibility in Parkinson's Disease. Mov Disord 2025; 40:431-437. [PMID: 39812497 DOI: 10.1002/mds.30097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by degeneration of dopaminergic neurons, with patients manifesting varying motor and nonmotor symptoms. Previous studies using single-cell RNA sequencing in rodent models and humans have identified distinct heterogeneity of neurons and glial cells with differential vulnerability. Recent studies have increasingly leveraged multiomics approaches, including spatial transcriptomics, epigenomics, and proteomics, in the study of Parkinson's disease, providing new insights into pathogenic mechanisms. Continued advancements in experimental technologies and sophisticated computational tools will be essential in uncovering a network of neuronal vulnerability and prioritizing disease modifiers for novel therapeutics development. © 2025 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marianna Liang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Parkinson's Disease Neurobiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Linh Chu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Parkinson's Disease Neurobiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Parkinson's Disease Neurobiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Lin CC'J, Tian Y, Tanzi RE, Jorfi M. Approaches for studying neuroimmune interactions in Alzheimer's disease. Trends Immunol 2024; 45:971-986. [PMID: 39537528 PMCID: PMC11624993 DOI: 10.1016/j.it.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Peripheral immune cells play an important role in the pathology of Alzheimer's disease (AD), impacting processes such as amyloid and tau protein aggregation, glial activation, neuronal integrity, and cognitive decline. Here, we examine cutting-edge strategies - encompassing animal and cellular models - used to investigate the roles of peripheral immune cells in AD. Approaches such as antibody-mediated depletion, genetic ablation, and bone marrow chimeras in mouse models have been instrumental in uncovering T, B, and innate immune cell disease-modifying functions. However, challenges such as specificity, off-target effects, and differences between human and mouse immune systems underscore the need for more human-relevant models. Emerging multicellular models replicating critical aspects of human brain tissue and neuroimmune interactions increasingly offer fresh insights into the role of immune cells in AD pathogenesis. Refining these methodologies can deepen our understanding of immune cell contributions to AD and support the development of novel immune-related therapeutic interventions.
Collapse
Affiliation(s)
- Chih-Chung 'Jerry' Lin
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yuyao Tian
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
8
|
Vatsa N, Brynildsen JK, Goralski TM, Kurgat K, Meyerdirk L, Breton L, DeWeerd D, Brasseur L, Turner L, Becker K, Gallik KL, Bassett DS, Henderson MX. Network analysis of α-synuclein pathology progression reveals p21-activated kinases as regulators of vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619411. [PMID: 39484617 PMCID: PMC11526907 DOI: 10.1101/2024.10.22.619411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
α-Synuclein misfolding and progressive accumulation drives a pathogenic process in Parkinson's disease. To understand cellular and network vulnerability to α-synuclein pathology, we developed a framework to quantify network-level vulnerability and identify new therapeutic targets at the cellular level. Full brain α-synuclein pathology was mapped in mice over 9 months. Empirical pathology data was compared to theoretical pathology estimates from a diffusion model of pathology progression along anatomical connections. Unexplained variance in the model enabled us to derive regional vulnerability that we compared to regional gene expression. We identified gene expression patterns that relate to regional vulnerability, including 12 kinases that were enriched in vulnerable regions. Among these, an inhibitor of group II PAKs demonstrated protection from neuron death and α-synuclein pathology, even after delayed compound treatment. This study provides a framework for the derivation of cellular vulnerability from network-based studies and identifies a promising therapeutic pathway for Parkinson's disease.
Collapse
Affiliation(s)
- Naman Vatsa
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Julia K. Brynildsen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas M. Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | | | | | - Dani S. Bassett
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Lead Contact
| |
Collapse
|
9
|
Wu H, Zhang ZH, Zhou P, Sui X, Liu X, Sun Y, Zhao X, Pu XP. A Single-Cell Atlas of the Substantia Nigra Reveals Therapeutic Effects of Icaritin in a Rat Model of Parkinson's Disease. Antioxidants (Basel) 2024; 13:1183. [PMID: 39456437 PMCID: PMC11505506 DOI: 10.3390/antiox13101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain are the main pathological changes in Parkinson's disease (PD); however, the mechanism underlying the selective vulnerability of specific neuronal populations in PD remains unclear. Here, we used single-cell RNA sequencing to identify seven cell clusters, including oligodendrocytes, neurons, astrocytes, oligodendrocyte progenitor cells, microglia, synapse-rich cells (SRCs), and endothelial cells, in the substantia nigra of a rotenone-induced rat model of PD based on marker genes and functional definitions. We found that SRCs were a previously unidentified cell subtype, and the tight interactions between SRCs and other cell populations can be improved by icaritin, which is a flavonoid extracted from Epimedium sagittatum Maxim. and exerts anti-neuroinflammatory, antioxidant, and immune-improving effects in PD. We also demonstrated that icaritin bound with transcription factors of SRCs, and icaritin application modulated synaptic characterization of SRCs, neuroinflammation, oxidative stress, and survival of dopaminergic neurons, and improved abnormal energy metabolism, amino acid metabolism, and phospholipase D metabolism of astrocytes in the substantia nigra of rats with PD. Moreover, icaritin supplementation also promotes the recovery of the physiological homeostasis of the other cell clusters to delay the pathogenesis of PD. These data uncovered previously unknown cellular diversity in a rat model of Parkinson's disease and provide insights into the promising therapeutic potential of icaritin in PD.
Collapse
Affiliation(s)
- Hao Wu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhen-Hua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Ping Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Xin Sui
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Xi Liu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- China State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; (H.W.); (X.L.); (Y.S.)
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|