1
|
Cai S, Deng Y, Zou Z, Tian W, Tang Z, Li J, Tan Z, Wu Z, Han Z, Wen B, Feng Y, Liu R, Zhu X, Wu Y, Xiao H, He H, Ye J, Zhong W. Metformin inhibits the progression of castration-resistant prostate cancer by regulating PDE6D induced purine metabolic alternation and cGMP / PKG pathway activation. Cancer Lett 2025; 622:217694. [PMID: 40216151 DOI: 10.1016/j.canlet.2025.217694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
The castration-resistant prostate cancer (CRPC) remains an incurable disease. Metformin has demonstrated a potential therapeutic effect on CRPC. However, the poor clinical performance of metformin against cancer may be due to its clinical dose being much lower than the anticancer concentration used in pre-clinical experiments. The challenge is to determine a way to enhance sensitivity to metformin at an appropriate concentration on CRPC. In this study, a mouse model of low-dose metformin treatment for CRPC cells were established. Metabolomic-seq and transcriptomic-seq was used to investigate changes in CRPC xenografts. We discovered that low-dose metformin inhibits the progression of CRPC by regulating PDE6D, which induces alterations in purine metabolism and activates the cGMP/PKG pathway. Furthermore, we found that cells with high expression of PDE6D were more resistant to metformin. When combined with the PDE6D inhibitor TMX-4100, the inhibitory effect on tumors was enhanced, and TMX-4100 demonstrated favorable biosafety in animal models. In conclusion, we found that low-dose metformin inhibits the progression of CRPC by regulating PDE6D-induced alterations in purine metabolism and activating the cGMP/PKG pathway. Moreover, patients with high PDE6D expression may exhibit greater resistance to metformin. Combining metformin with TMX-4100 could further improve the inhibitory effects on tumors.
Collapse
Affiliation(s)
- Shanghua Cai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yulin Deng
- Department of Urology, The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710, Dongguan, Guangdong, China
| | - Zhihao Zou
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Weicheng Tian
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhenfeng Tang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Jinchuang Li
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zeheng Tan
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zhenjie Wu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zhaodong Han
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Biyan Wen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yuanfa Feng
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Ren Liu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Xuejin Zhu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Yongding Wu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Haiyin Xiao
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Huichan He
- Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China.
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macao Special Administrative Region of China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China.
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macao Special Administrative Region of China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Wang H, Xu F, Wang C. Metabolic reprogramming of tumor microenviroment by engineered bacteria. Semin Cancer Biol 2025; 112:58-70. [PMID: 40157514 DOI: 10.1016/j.semcancer.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming-where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion-has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.
Collapse
Affiliation(s)
- Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Qiu X, Gao Q, Wang J, Zhang Z, Tao L. The microbiota-m 6A-metabolism axis: Implications for therapeutic strategies in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189317. [PMID: 40222422 DOI: 10.1016/j.bbcan.2025.189317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Gastrointestinal (GI) cancers remain a leading cause of cancer-related mortality worldwide, with metabolic reprogramming recognized as a central driver of tumor progression and therapeutic resistance. Among the key regulatory layers, N6-methyladenosine (m6A) RNA modification-mediated by methyltransferases (writers such as METTL3/14), RNA-binding proteins (readers like YTHDFs and IGF2BPs), and demethylases (erasers including FTO and ALKBH5), plays a pivotal role in controlling gene expression and metabolic flux in the tumor context. Concurrently, the gut microbiota profoundly influences GI tumorigenesis and immune evasion by modulating metabolite availability and remodeling the tumor microenvironment. Recent evidence has uncovered a bidirectional crosstalk between microbial metabolites and m6A methylation: microbiota-derived signals dynamically regulate m6A deposition on metabolic and immune transcripts, while m6A modifications, in turn, regulate the stability and translation of key mRNAs such as PD-L1 and FOXP3. This reciprocal interaction forms self-reinforcing epigenetic circuits that drive tumor plasticity, immune escape, and metabolic adaptation. In this review, we dissect the molecular underpinnings of the microbiota-m6A-metabolism axis in GI cancers and explore its potential to inform novel strategies in immunotherapy, metabolic intervention, and microbiome-guided precision oncology.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qi Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Tao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhang L, Liu T, Chen M, Gao S, Staley CA, Yang L, Zhu L. Dual inhibition of oxidative phosphorylation and glycolysis using a hyaluronic acid nanoparticle NOX inhibitor enhanced response to radiotherapy in colorectal cancer. Biomaterials 2025; 323:123437. [PMID: 40449083 DOI: 10.1016/j.biomaterials.2025.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/04/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
Metabolic reprogramming characterized by mitochondrial dysfunction and increased glycolysis is associated with aggressive tumor biology and poor therapeutic response. The interplays among NADPH oxidase (NOX)-mediated reactive oxygen species, regulation of glycolysis and oxidative phosphorylation (OXPHOS) in cancer cells suggest an opportunity to develop a new cancer therapy. We found that treatment with a hyaluronic acid nanoparticle encapsulated with GKT831 (HANP/GKT831), a NOX1/4 inhibitor, markedly inhibited the proliferation and invasion of cancer cells. Treated tumor cells had reduced levels of mitochondrial ROS, glycolysis, and OXPHOS. The combination of HANP/GKT831 with radiation reduced colony formation and invasion of tumor cells. The combination therapy markedly inhibited the levels of molecules in glycolysis, OXPHOS, and DNA repairing pathways in tumor cells. Systemic administrations of HANP/GKT831 combined with radiotherapy significantly inhibited tumor growth by 84.7 % in a mouse colorectal tumor model. Tumors treated with HANP/GKT831 and radiation had increased DNA damage and apoptotic cell death. Furthermore, the combined therapy increased intratumoral infiltration of activated cytotoxic T cells and M1 macrophages but reduced the levels of immunosuppressive fibroblasts and M2 macrophages. Our results support HANP/GKT831 as a cancer nanotherapeutic agent that induces redox and bioenergy stresses in cancer cells for enhanced therapeutic response to radiotherapy.
Collapse
Affiliation(s)
- Lumeng Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Minglong Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Charles A Staley
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| |
Collapse
|
5
|
Xu M, Zhou J, Lv J, Zhang Y. Tumor suppressing function of SLC16A7 in bladder cancer and its pan-cancer analysis. BMC Cancer 2025; 25:932. [PMID: 40410718 PMCID: PMC12102997 DOI: 10.1186/s12885-025-14345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Bladder cancer (BCa), a prevalent malignancy of the urinary tract, is associated with high recurrence and mortality rates. SLC16A7, a member of the solute carrier family 16 (SLC16), encodes monocarboxylate transporters that are involved in the proton-coupled transport of metabolites, including lactate, pyruvate, and ketone bodies, across cell membranes. Evidence suggests that SLC16A7 exhibits variable expression in cancers and may influence tumor development, progression, and immune regulation. This study examined the role of SLC16A7 in cancer prognosis, progression, and immune regulation, focusing on BCa. METHODS A comprehensive analysis was conducted to evaluate the clinical and immunological relevance of SLC16A7 across multiple cancer types using data from 33 tumor datasets from 'The Cancer Genome Atlas (TCGA). ' Associations between SLC16A7 expression and clinicopathological features, prognostic indicators, tumor mutation burden (TMB), microsatellite instability (MSI), immune cell infiltration, and immune-related gene expression were systematically analyzed. Experimental validation was performed to assess SLC16A7 expression in the BCa tissues and cell lines. The prognostic value of SLC16A7 was confirmed using clinical follow-up data from an independent patient cohort. Functional studies included proliferation assays to investigate the effect of SLC16A7. CD8 + T cells were obtained from the peripheral blood of healthy donors and stimulated using CD3 and CD28 antibodies in combination with recombinant IL-2. To investigate the immunological role of SLC16A7, co-culture experiments were performed between BCa cells and activated CD8 + T cells. Additionally, CD8 + T cell chemotaxis assays and ELISA analyses were conducted to evaluate the immune responses mediated by SLC16A7. RESULTS SLC16A7 expression was downregulated in 16 cancer types, including BCa, and upregulated in three cancer types. Its expression was significantly associated with tumor stage in four cancers and showed both positive and negative correlations with prognosis, depending on the cancer type. Genomic analyses revealed significant associations between SLC16A7 and TMB in 13 cancer types and MSI in 11 cancer types. Pathway enrichment analyses (Hallmark-GSEA and KEGG-GSEA) indicated strong associations between SLC16A7, immune responses, and tumor progression. Immune infiltration analysis showed a predominantly positive association between SLC16A7 expression and immune cell infiltration, except in low-grade gliomas (LGG). CIBERSORT analysis demonstrated that SLC16A7 expression correlated positively with resting memory CD4 T cells, eosinophils, monocytes, resting mast cells, and memory B cells and negatively with activated memory CD4 T cells, M1 macrophages, follicular helper T cells, M0 macrophages, and CD8 T cells. SLC16A7 expression was also significantly associated with the expression of immune-regulatory molecules. Experimental validation showed reduced SLC16A7 expression in BCa tissues and cell lines compared to that in their normal counterparts. Kaplan-Meier survival analysis indicated that higher SLC16A7 expression was correlated with better overall survival in patients with BCa. Functional assays revealed that SLC16A7 inhibited BCa cell progression and promoted the chemotaxis and tumor-killing ability of CD8 + T cells in the BCa tumor microenvironment (TME). CONCLUSIONS SLC16A7 exhibits tumor-suppressive properties, with downregulation in most cancers, and is associated with favorable prognosis and enhanced immune responses. SLC16A7 functions as a tumor suppressor in BCa and is associated with improved survival outcomes. These findings suggest that SLC16A7 is a potential biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Mingjie Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiatong Zhou
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiancheng Lv
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yu Zhang
- Department of Urology, Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China.
| |
Collapse
|
6
|
Wolska W, Gutowska I, Wszołek A, Żwierełło W. The Role of Intermittent Fasting in the Activation of Autophagy Processes in the Context of Cancer Diseases. Int J Mol Sci 2025; 26:4742. [PMID: 40429883 PMCID: PMC12112746 DOI: 10.3390/ijms26104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Intermittent fasting (IF) is a dietary approach that influences key metabolic pathways, including autophagy-a crucial mechanism in maintaining cellular homeostasis. Autophagy plays a dual role in oncogenesis, acting both as a tumor suppressor and a survival mechanism under metabolic stress. IF has shown potential for reducing cancer risk and enhancing therapeutic efficacy by sensitizing tumor cells to chemotherapy and radiotherapy. However, its effects depend heavily on the type and stage of cancer. Potential risks, such as excessive weight loss and malnutrition, require careful evaluation. Further clinical studies are needed to optimize IF protocols as adjuncts to cancer therapy. This review discusses autophagy mechanisms induced by IF, their therapeutic implications in oncology, and the limitations of this dietary strategy.
Collapse
Affiliation(s)
- Waleria Wolska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gate 1, 7030 Trondheim, Norway
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
| | - Agata Wszołek
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland;
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
| |
Collapse
|
7
|
Zhao X, Zhu Y, He Y, Gu W, Zhou Q, Jin B, Chen S, Lin H. Unraveling the immune evasion mechanisms in the tumor microenvironment of head and neck squamous cell carcinoma. Front Immunol 2025; 16:1597202. [PMID: 40438103 PMCID: PMC12116449 DOI: 10.3389/fimmu.2025.1597202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by a complex tumor microenvironment (TME) that plays a pivotal role in tumor initiation, progression, and immune evasion. Recent advancements have highlighted the intricate interplay between immune cell infiltration patterns, immune checkpoint dysregulation, and metabolic reprogramming in driving HNSCC immune escape. Despite these insights, significant challenges remain, including the incomplete understanding of specific immune evasion pathways and the lack of personalized therapeutic strategies. To address these gaps, this review introduces a novel "Trinity" regulatory network of immune evasion in HNSCC, encompassing: (1) metabolic reprogramming-mediated immune checkpoint modulation, (2) stromal cell-driven immune dysfunction, and (3) epigenetic remodeling fostering immune tolerance. This framework provides a theoretical foundation for the development of multi-targeted combination therapies and offers innovative strategies to overcome immune evasion. Additionally, this review systematically synthesizes the current understanding of the relationship between the HNSCC microenvironment and immune escape, with a focus on emerging immunotherapeutic approaches such as PD-1/PD-L1 inhibitors and CAR-T cell therapy. Leveraging cutting-edge single-cell sequencing and spatial transcriptomics, we elucidate the spatiotemporal heterogeneity of the HNSCC immune landscape and propose a new paradigm of "lineage plasticity-driven immune adaptation." These insights not only advance our understanding of HNSCC biology but also pave the way for the development of precision immunotherapies aimed at improving patient survival and quality of life. By integrating multidisciplinary perspectives, this work underscores the importance of targeting the TME to achieve durable clinical responses and overcome immunotherapy resistance in HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenguo Chen
- Department of Stomatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haisheng Lin
- Department of Stomatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
8
|
Guo Z, Li K, Ren X, Wang X, Yang D, Ma S, Zeng X, Zhang P. The role of the tumor microenvironment in HNSCC resistance and targeted therapy. Front Immunol 2025; 16:1554835. [PMID: 40236700 PMCID: PMC11996806 DOI: 10.3389/fimmu.2025.1554835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
The prognosis for head and neck squamous cell carcinoma (HNSCC) remains unfavorable, primarily due to significant therapeutic resistance and the absence effective interventions. A major obstacle in cancer treatment is the persistent resistance of cancer cells to a variety of therapeutic modalities. The tumor microenvironment (TME) which includes encompasses all non-malignant components and their metabolites within the tumor tissue, plays a crucial role in this context. The distinct characteristics of the HNSCC TME facilitate tumor growth, invasion, metastasis, and resistance to treatment. This review provides a comprehensive overview of the HNSCC TME components, with a particular focus on tumor-associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), the extracellular matrix, reprogrammed metabolic processes, and metabolic products. It elucidates their contributions to modulating resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy in HNSCC, and explores novel therapeutic strategies targeting the TME for HNSCC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Obisi JN, Abimbola ANJ, Babaleye OA, Atidoglo PK, Usin SG, Nwanaforo EO, Patrick-Inezi FS, Fasogbon IV, Chimezie J, Dare CA, Kuti OO, Uti DE, Omeoga HC. Unveiling the future of cancer stem cell therapy: a narrative exploration of emerging innovations. Discov Oncol 2025; 16:373. [PMID: 40120008 PMCID: PMC11929669 DOI: 10.1007/s12672-025-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stem cells (CSCs), are a critical subpopulation within tumours, and are defined by their capacity for self-renewal, differentiation, and tumour initiation. These unique traits contribute to tumour progression, metastasis, and resistance to conventional treatments like chemotherapy and radiotherapy, often resulting in cancer recurrence and poor patient outcomes. As such, CSCs have become focal points in developing advanced cancer therapies. This review highlights progress in CSC-targeted treatments, including chimeric antigen receptor T-cell (CAR-T) therapy, immunotherapy, molecular targeting, and nanoparticle-based drug delivery systems. Plant-derived compounds and gene-editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR), are explored for their potential to enhance precision and minimize side effects. Metabolic pathways integral to CSC survival, such as mitochondrial dynamics, mitophagy (regulated by dynamin-related protein 1 [DRP1] and the PINK1/Parkin pathway), one-carbon metabolism, amino acid metabolism (involving enzymes like glutaminase (GLS) and glutamate dehydrogenase (GDH]), lipid metabolism, and hypoxia-induced metabolic reprogramming mediated by hypoxia-inducible factors (HIF-1α and HIF-2α), are examined as therapeutic targets. The adaptability of CSCs through autophagy, metabolic flexibility, and epigenetic regulation by metabolites like α-ketoglutarate, succinate, and fumarate is discussed. Additionally, extracellular vesicles and nicotinamide adenine dinucleotide (NAD⁺) metabolism are identified as pivotal in redox balance, DNA repair, and epigenetic modifications. Addressing challenges such as tumour heterogeneity, immune evasion, and treatment durability requires interdisciplinary collaboration. Advancing CSC-targeted therapies is essential for overcoming drug resistance and preventing cancer relapse, paving the way for transformative cancer treatments. This review underscores the importance of leveraging innovative technologies and fostering collaboration to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | | | - Oluwasegun Adesina Babaleye
- Center for Human Virology and Genomics, Department of Microbiology, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Peter Kwame Atidoglo
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Saviour God'swealth Usin
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Eudora Obioma Nwanaforo
- Environmental Health Science Department, School of Heath Technology, Federal University of Technology Owerri, Owerri, Nigeria
| | | | | | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Daniel Ejim Uti
- Department of Biochemistry/Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | | |
Collapse
|
10
|
Yue B, Gao W, Lovell JF, Jin H, Huang J. The cGAS-STING pathway in cancer immunity: dual roles, therapeutic strategies, and clinical challenges. Essays Biochem 2025; 69:EBC20253006. [PMID: 40052963 DOI: 10.1042/ebc20253006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a crucial component of the host's innate immunity and plays a central role in detecting cytosolic double-stranded DNA from endogenous and exogenous sources. Upon activation, cGAS synthesizes cGAMP, which binds to STING, triggering a cascade of immune responses, including the production of type I interferons and pro-inflammatory cytokines. In the context of cancers, the cGAS-STING pathway can exert dual roles: on the one hand, it promotes anti-tumor immunity by enhancing antigen presentation, stimulating T-cell responses, and inducing direct tumor cell apoptosis. On the other hand, chronic activation, particularly in tumors with chromosomal instability, can lead to immune suppression and tumor progression. Persistent cGAS-STING signaling results in the up-regulation of immune checkpoint molecules such as PD-L1, contributing to immune evasion and metastasis. Consequently, anti-tumor strategies targeting the cGAS-STING pathway have to consider the balance of immune activation and the immune tolerance caused by chronic activation. This review explores the mechanisms underlying both the anti-tumor and protumor roles of the cGAS-STING pathway, with a focus on potential therapeutic approaches, and the challenges faced in their clinical application, along with corresponding solutions.
Collapse
Affiliation(s)
- Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbo Gao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, U.S.A
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Province Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| |
Collapse
|
11
|
Suri C, Pande B, Suhasini Sahithi L, Swarnkar S, Khelkar T, Verma HK. Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:7. [PMID: 40051496 PMCID: PMC11883236 DOI: 10.20517/cdr.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025]
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton AB T6G 1Z2, Canada
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India
| | | | | | - Tuneer Khelkar
- Department of Botany and Biotechnology, Govt. Kaktiya P G College, Jagdalpur 494001, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich 85764, Germany
| |
Collapse
|