1
|
Mishra B, Kumar N, Shahid Mukhtar M. A Rice Protein Interaction Network Reveals High Centrality Nodes and Candidate Pathogen Effector Targets. Comput Struct Biotechnol J 2022; 20:2001-2012. [PMID: 35521542 PMCID: PMC9062363 DOI: 10.1016/j.csbj.2022.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
Network science identifies key players in diverse biological systems including host-pathogen interactions. We demonstrated a scale-free network property for a comprehensive rice protein–protein interactome (RicePPInets) that exhibits nodes with increased centrality indices. While weighted k-shell decomposition was shown efficacious to predict pathogen effector targets in Arabidopsis, we improved its computational code for a broader implementation on large-scale networks including RicePPInets. We determined that nodes residing within the internal layers of RicePPInets are poised to be the most influential, central, and effective information spreaders. To identify central players and modules through network topology analyses, we integrated RicePPInets and co-expression networks representing susceptible and resistant responses to strains of the bacterial pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola (Xoc) and generated a RIce-Xanthomonas INteractome (RIXIN). This revealed that previously identified candidate targets of pathogen transcription activator-like (TAL) effectors are enriched in nodes with enhanced connectivity, bottlenecks, and information spreaders that are located in the inner layers of the network, and these nodes are involved in several important biological processes. Overall, our integrative multi-omics network-based platform provides a potentially useful approach to prioritizing candidate pathogen effector targets for functional validation, suggesting that this computational framework can be broadly translatable to other complex pathosystems.
Collapse
|
2
|
Skinnider MA, Scott NE, Prudova A, Kerr CH, Stoynov N, Stacey RG, Chan QWT, Rattray D, Gsponer J, Foster LJ. An atlas of protein-protein interactions across mouse tissues. Cell 2021; 184:4073-4089.e17. [PMID: 34214469 DOI: 10.1016/j.cell.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nichollas E Scott
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Peter Doherty Institute, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anna Prudova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Rattray
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
3
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Westerman EL, Bowman SEJ, Davidson B, Davis MC, Larson ER, Sanford CPJ. Deploying Big Data to Crack the Genotype to Phenotype Code. Integr Comp Biol 2021; 60:385-396. [PMID: 32492136 DOI: 10.1093/icb/icaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of biology. Deciphering these connections will unite questions and datasets across all scales from molecules to ecosystems. Although high-throughput sequencing has provided a rich platform on which to launch this effort, tools for deciphering mechanisms further along the genome to phenome pipeline remain limited. Machine learning approaches and other emerging computational tools hold the promise of augmenting human efforts to overcome these obstacles. This vision paper is the result of a Reintegrating Biology Workshop, bringing together the perspectives of integrative and comparative biologists to survey challenges and opportunities in cracking the genotype to phenotype code and thereby generating predictive frameworks across biological scales. Key recommendations include promoting the development of minimum "best practices" for the experimental design and collection of data; fostering sustained and long-term data repositories; promoting programs that recruit, train, and retain a diversity of talent; and providing funding to effectively support these highly cross-disciplinary efforts. We follow this discussion by highlighting a few specific transformative research opportunities that will be advanced by these efforts.
Collapse
Affiliation(s)
- Erica L Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sarah E J Bowman
- High-Throughput Crystallization Screening Center, Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA.,Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, NY 14203, USA
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Marcus C Davis
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Eric R Larson
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Christopher P J Sanford
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| |
Collapse
|
5
|
Tanaka Y, Higashihara K, Nakazawa MA, Yamashita F, Tamada Y, Okuno Y. Dynamic changes in gene-to-gene regulatory networks in response to SARS-CoV-2 infection. Sci Rep 2021; 11:11241. [PMID: 34045524 PMCID: PMC8160150 DOI: 10.1038/s41598-021-90556-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/12/2021] [Indexed: 01/08/2023] Open
Abstract
The current pandemic of SARS-CoV-2 has caused extensive damage to society. The characterization of SARS-CoV-2 profiles has been addressed by researchers globally with the aim of resolving this disruptive crisis. This investigation process is indispensable to understand how SARS-CoV-2 behaves in human host cells. However, little is known about the systematic molecular mechanisms involved in the effects of SARS-CoV-2 infection on human host cells. Here, we present gene-to-gene regulatory networks in response to SARS-CoV-2 using a Bayesian network. We examined the dynamic changes in the SARS-CoV-2-purturbated networks established by our proposed framework for gene network analysis, thus revealing that interferon signaling gradually switched to the subsequent inflammatory cytokine signaling cascades. Furthermore, we succeeded in capturing a COVID-19 patient-specific network in which transduction of these signals was concurrently induced. This enabled us to explore the local regulatory systems influenced by SARS-CoV-2 in host cells more precisely at an individual level. Our panel of network analyses has provided new insights into SARS-CoV-2 research from the perspective of cellular systems.
Collapse
Affiliation(s)
- Yoshihisa Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Biomedical Computational Intelligence Unit, HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe, 650-0047, Japan
| | - Kako Higashihara
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | | | - Fumiyoshi Yamashita
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshinori Tamada
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan. .,Innovation Center for Health Promotion, Hirosaki University, Hirosaki, 036-8562, Japan.
| | - Yasushi Okuno
- Biomedical Computational Intelligence Unit, HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe, 650-0047, Japan. .,Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Siebert JC, Saint-Cyr M, Borengasser SJ, Wagner BD, Lozupone CA, Görg C. CANTARE: finding and visualizing network-based multi-omic predictive models. BMC Bioinformatics 2021; 22:80. [PMID: 33607938 PMCID: PMC7896366 DOI: 10.1186/s12859-021-04016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND One goal of multi-omic studies is to identify interpretable predictive models for outcomes of interest, with analytes drawn from multiple omes. Such findings could support refined biological insight and hypothesis generation. However, standard analytical approaches are not designed to be "ome aware." Thus, some researchers analyze data from one ome at a time, and then combine predictions across omes. Others resort to correlation studies, cataloging pairwise relationships, but lacking an obvious approach for cohesive and interpretable summaries of these catalogs. METHODS We present a novel workflow for building predictive regression models from network neighborhoods in multi-omic networks. First, we generate pairwise regression models across all pairs of analytes from all omes, encoding the resulting "top table" of relationships in a network. Then, we build predictive logistic regression models using the analytes in network neighborhoods of interest. We call this method CANTARE (Consolidated Analysis of Network Topology And Regression Elements). RESULTS We applied CANTARE to previously published data from healthy controls and patients with inflammatory bowel disease (IBD) consisting of three omes: gut microbiome, metabolomics, and microbial-derived enzymes. We identified 8 unique predictive models with AUC > 0.90. The number of predictors in these models ranged from 3 to 13. We compare the results of CANTARE to random forests and elastic-net penalized regressions, analyzing AUC, predictions, and predictors. CANTARE AUC values were competitive with those generated by random forests and penalized regressions. The top 3 CANTARE models had a greater dynamic range of predicted probabilities than did random forests and penalized regressions (p-value = 1.35 × 10-5). CANTARE models were significantly more likely to prioritize predictors from multiple omes than were the alternatives (p-value = 0.005). We also showed that predictive models from a network based on pairwise models with an interaction term for IBD have higher AUC than predictive models built from a correlation network (p-value = 0.016). R scripts and a CANTARE User's Guide are available at https://sourceforge.net/projects/cytomelodics/files/CANTARE/ . CONCLUSION CANTARE offers a flexible approach for building parsimonious, interpretable multi-omic models. These models yield quantitative and directional effect sizes for predictors and support the generation of hypotheses for follow-up investigation.
Collapse
Affiliation(s)
- Janet C Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Martine Saint-Cyr
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carsten Görg
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| |
Collapse
|
7
|
System-Based Differential Gene Network Analysis for Characterizing a Sample-Specific Subnetwork. Biomolecules 2020; 10:biom10020306. [PMID: 32075209 PMCID: PMC7072632 DOI: 10.3390/biom10020306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Gene network estimation is a method key to understanding a fundamental cellular system from high throughput omics data. However, the existing gene network analysis relies on having a sufficient number of samples and is required to handle a huge number of nodes and estimated edges, which remain difficult to interpret, especially in discovering the clinically relevant portions of the network. Here, we propose a novel method to extract a biomedically significant subnetwork using a Bayesian network, a type of unsupervised machine learning method that can be used as an explainable and interpretable artificial intelligence algorithm. Our method quantifies sample specific networks using our proposed Edge Contribution value (ECv) based on the estimated system, which realizes condition-specific subnetwork extraction using a limited number of samples. We applied this method to the Epithelial-Mesenchymal Transition (EMT) data set that is related to the process of metastasis and thus prognosis in cancer biology. We established our method-driven EMT network representing putative gene interactions. Furthermore, we found that the sample-specific ECv patterns of this EMT network can characterize the survival of lung cancer patients. These results show that our method unveils the explainable network differences in biological and clinical features through artificial intelligence technology.
Collapse
|
8
|
Nguyen ND, Blaby IK, Wang D. ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks. BMC Genomics 2019; 20:1003. [PMID: 31888454 PMCID: PMC6936142 DOI: 10.1186/s12864-019-6329-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The coordination of genomic functions is a critical and complex process across biological systems such as phenotypes or states (e.g., time, disease, organism, environmental perturbation). Understanding how the complexity of genomic function relates to these states remains a challenge. To address this, we have developed a novel computational method, ManiNetCluster, which simultaneously aligns and clusters gene networks (e.g., co-expression) to systematically reveal the links of genomic function between different conditions. Specifically, ManiNetCluster employs manifold learning to uncover and match local and non-linear structures among networks, and identifies cross-network functional links. RESULTS We demonstrated that ManiNetCluster better aligns the orthologous genes from their developmental expression profiles across model organisms than state-of-the-art methods (p-value <2.2×10-16). This indicates the potential non-linear interactions of evolutionarily conserved genes across species in development. Furthermore, we applied ManiNetCluster to time series transcriptome data measured in the green alga Chlamydomonas reinhardtii to discover the genomic functions linking various metabolic processes between the light and dark periods of a diurnally cycling culture. We identified a number of genes putatively regulating processes across each lighting regime. CONCLUSIONS ManiNetCluster provides a novel computational tool to uncover the genes linking various functions from different networks, providing new insight on how gene functions coordinate across different conditions. ManiNetCluster is publicly available as an R package at https://github.com/daifengwanglab/ManiNetCluster.
Collapse
Affiliation(s)
- Nam D Nguyen
- Deparment of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ian K Blaby
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA. .,US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 4720, CA, USA.
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53726, WI, USA. .,Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.
| |
Collapse
|
9
|
McGillivray P, Clarke D, Meyerson W, Zhang J, Lee D, Gu M, Kumar S, Zhou H, Gerstein M. Network Analysis as a Grand Unifier in Biomedical Data Science. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013444] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomedical data scientists study many types of networks, ranging from those formed by neurons to those created by molecular interactions. People often criticize these networks as uninterpretable diagrams termed hairballs; however, here we show that molecular biological networks can be interpreted in several straightforward ways. First, we can break down a network into smaller components, focusing on individual pathways and modules. Second, we can compute global statistics describing the network as a whole. Third, we can compare networks. These comparisons can be within the same context (e.g., between two gene regulatory networks) or cross-disciplinary (e.g., between regulatory networks and governmental hierarchies). The latter comparisons can transfer a formalism, such as that for Markov chains, from one context to another or relate our intuitions in a familiar setting (e.g., social networks) to the relatively unfamiliar molecular context. Finally, key aspects of molecular networks are dynamics and evolution, i.e., how they evolve over time and how genetic variants affect them. By studying the relationships between variants in networks, we can begin to interpret many common diseases, such as cancer and heart disease.
Collapse
Affiliation(s)
- Patrick McGillivray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Declan Clarke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - William Meyerson
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jing Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Donghoon Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Mengting Gu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| | - Sushant Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Holly Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
10
|
Ahmed H, Howton TC, Sun Y, Weinberger N, Belkhadir Y, Mukhtar MS. Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 2018; 9:2312. [PMID: 29899369 PMCID: PMC5998135 DOI: 10.1038/s41467-018-04632-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1MAIN). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSILRR) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.
Collapse
Affiliation(s)
- Hadia Ahmed
- Department of Computer Science, University of Alabama at Birmingham, 115A Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294, USA
| | - T C Howton
- Department of Biology, University of Alabama at Birmingham, 464 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294, USA
| | - Yali Sun
- Department of Biology, University of Alabama at Birmingham, 464 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294, USA
| | - Natascha Weinberger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, 1030, Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, 1030, Vienna, Austria
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 464 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, WEBB 568, Birmingham, AL, 35294, USA.
| |
Collapse
|