1
|
Corbera-Rubio F, Boersma AS, de Vet W, Pabst M, van der Wielen PWJJ, van Kessel MAHJ, van Loosdrecht MCM, van Halem D, Lücker S, Laureni M. Biological methane removal by groundwater trickling biofiltration for emissions reduction. WATER RESEARCH 2025; 279:123450. [PMID: 40068284 DOI: 10.1016/j.watres.2025.123450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/26/2025] [Accepted: 03/05/2025] [Indexed: 05/06/2025]
Abstract
Methane removal is an essential step in drinking water production from methane-rich groundwaters. Conventional aeration-based stripping results in significant direct methane emissions, contributing up to one-third of a treatment plant's total carbon footprint. To address this, a full-scale trickling filter was operated for biological methane oxidation upstream of a submerged sand filter, and its performance was compared to a conventional aeration-submerged sand filtration set-up. Full-scale data were combined with ex-situ batch assays and metagenome-resolved metaproteomics to quantify the individual contribution of the main (a)biotic processes and characterize the enriched microbial communities. Both treatment setups fully removed methane, iron, ammonium, and manganese, yet the underlying mechanisms differed significantly. Methane was completely removed from the effluent after trickling filtration, with stripping and biological oxidation each accounting for half of the removal, thereby halving overall methane emissions. Methane-oxidizing bacteria not only outcompeted nitrifiers in the trickling filter, but also likely contributed directly to ammonia oxidation. In contrast to the submerged filter preceded by methane stripping, signatures of biological iron oxidation were almost completely absent in the trickling filter, suggesting that the presence of methane directly or indirectly promotes chemical iron oxidation. All systems had similar ex-situ manganese oxidation capacities, yet removal occurred only in the submerged filters but not the trickling filter. Ultimately, our results demonstrate that trickling filtration is effective in promoting biological methane oxidation at comparable produced drinking water quality, highlighting its potential for advancing sustainable drinking water production.
Collapse
Affiliation(s)
| | - Alje S Boersma
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Weren de Vet
- Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands; NV WML, Limburglaan 25, Maastricht 6229 GA, the Netherlands
| | - Martin Pabst
- Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Paul W J J van der Wielen
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands
| | - Mark C M van Loosdrecht
- Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands; Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Doris van Halem
- Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, the Netherlands.
| | - Michele Laureni
- Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| |
Collapse
|
2
|
Pipart J, Holstein T, Martens L, Muth T. MultiStageSearch: An Iterative Workflow for Unbiased Taxonomic Analysis of Pathogens Using Proteogenomics. J Proteome Res 2025. [PMID: 40384001 DOI: 10.1021/acs.jproteome.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The global SARS-CoV-2 pandemic emphasized the need for accurate pathogen diagnostics. While genomics is the gold standard, integrating mass spectrometry-based proteomics offers additional benefits. However, current proteomic and genomic reference databases are often biased toward specific taxa, such as pathogenic strains or model organisms, and proteomic databases are less comprehensive. These biases and gaps can lead to inaccurate identifications. To address these issues, we introduce MultiStageSearch, a multistep database search method that combines proteome and genome databases for taxonomic analysis. Initially, a generalist proteome database is used to infer potential species. Then, MultiStageSearch generates a specialized proteogenomic database for precise identification. This database is preprocessed to filter duplicates and cluster identical open reading frames to reduce genomic database biases. The workflow operates independently of strain-level NCBI taxonomy, enabling the identification of strains not represented in existing taxonomies. We benchmarked the workflow on viral and bacterial samples, demonstrating its superior performance in strain-level taxonomic inference compared to existing methods. MultiStageSearch offers a flexible and accurate approach for pathogen research and diagnostics, overcoming incomplete search spaces and biases inherent in reference databases.
Collapse
Affiliation(s)
- Julian Pipart
- Data Competence Center MF 2, Robert Koch Institute, Berlin 13353, Germany
| | - Tanja Holstein
- Data Competence Center MF 2, Robert Koch Institute, Berlin 13353, Germany
- CompOmics, VIB Center for Medical Biotechnology, VIB, Ghent 9000, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, Strasbourg 67000, France
- Infrastructure Nationale de Protéomique ProFIFR2048, Strasbourg 67087, France
| | - Lennart Martens
- CompOmics, VIB Center for Medical Biotechnology, VIB, Ghent 9000, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC UMR 7178, University of Strasbourg, CNRS, Strasbourg 67000, France
- Infrastructure Nationale de Protéomique ProFIFR2048, Strasbourg 67087, France
| | - Thilo Muth
- Data Competence Center MF 2, Robert Koch Institute, Berlin 13353, Germany
| |
Collapse
|
3
|
van Olst B, Eerden SA, Eštok NA, Roy S, Abbas B, Lin Y, van Loosdrecht MCM, Pabst M. Metaproteomic Profiling of the Secretome of a Granule-forming Ca. Accumulibacter Enrichment. Proteomics 2025; 25:e202400189. [PMID: 40066478 PMCID: PMC12019908 DOI: 10.1002/pmic.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/25/2025]
Abstract
Extracellular proteins are supposed to play crucial roles in the formation and structure of biofilms and aggregates. However, often little is known about these proteins, in particular for microbial communities. Here, we use two advanced metaproteomic approaches to study the extracellular proteome in a granular Candidatus Accumulibacter enrichment as a proxy for microbial communities that form solid microbial granules, such as those used in biological wastewater treatment. Limited proteolysis of whole granules and metaproteome isolation from the culture's supernatant successfully classified over 50% of the identified protein biomass to be secreted. Moreover, structural and sequence-based classification identified 387 proteins, corresponding to over 50% of the secreted protein biomass, with characteristics that could aid the formation of aggregates, including filamentous, beta-barrel containing, and cell surface proteins. While various of these aggregate-forming proteins originated from Ca. Accumulibacter, some proteins associated with other taxa. This suggests that not only a range of different proteins but also multiple organisms contribute to granular biofilm formation. Therefore, the obtained extracellular metaproteome data from the granular Ca. Accumulibacter enrichment provides a resource for exploring proteins that potentially support the formation and stability of granular biofilms, whereas the demonstrated approaches can be applied to explore biofilms of microbial communities in general.
Collapse
Affiliation(s)
- Berdien van Olst
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Simon A. Eerden
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Nella A. Eštok
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Samarpita Roy
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Ben Abbas
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Yuemei Lin
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | | | - Martin Pabst
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| |
Collapse
|
4
|
Van Den Bossche T, Beslic D, van Puyenbroeck S, Suomi T, Holstein T, Martens L, Elo LL, Muth T. Metaproteomics Beyond Databases: Addressing the Challenges and Potentials of De Novo Sequencing. Proteomics 2025:e202400321. [PMID: 39888246 DOI: 10.1002/pmic.202400321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Metaproteomics enables the large-scale characterization of microbial community proteins, offering crucial insights into their taxonomic composition, functional activities, and interactions within their environments. By directly analyzing proteins, metaproteomics offers insights into community phenotypes and the roles individual members play in diverse ecosystems. Although database-dependent search engines are commonly used for peptide identification, they rely on pre-existing protein databases, which can be limiting for complex, poorly characterized microbiomes. De novo sequencing presents a promising alternative, which derives peptide sequences directly from mass spectra without requiring a database. Over time, this approach has evolved from manual annotation to advanced graph-based, tag-based, and deep learning-based methods, significantly improving the accuracy of peptide identification. This Viewpoint explores the evolution, advantages, limitations, and future opportunities of de novo sequencing in metaproteomics. We highlight recent technological advancements that have improved its potential for detecting unsequenced species and for providing deeper functional insights into microbial communities.
Collapse
Affiliation(s)
- Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Denis Beslic
- Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute, Berlin, Germany
| | - Sam van Puyenbroeck
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tanja Holstein
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Data Competence Center MF 2, Robert Koch Institute, Berlin, Germany
| | - Lennart Martens
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Thilo Muth
- Data Competence Center MF 2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
5
|
Arıkan M, Atabay B. Construction of Protein Sequence Databases for Metaproteomics: A Review of the Current Tools and Databases. J Proteome Res 2024; 23:5250-5262. [PMID: 39449618 DOI: 10.1021/acs.jproteome.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In metaproteomics studies, constructing a reference protein sequence database that is both comprehensive and not overly large is critical for the peptide identification step. Therefore, the availability of well-curated reference databases and tools for custom database construction is essential to enhance the performance of metaproteomics analyses. In this review, we first provide an overview of metaproteomics by presenting a concise historical background, outlining a typical experimental and bioinformatics workflow, emphasizing the crucial step of constructing a protein sequence database for metaproteomics. We then delve into the current tools available for building such databases, highlighting their individual approaches, utility, and advantages and limitations. Next, we examine existing protein sequence databases, detailing their scope and relevance in metaproteomics research. Then, we provide practical recommendations for constructing protein sequence databases for metaproteomics, along with an overview of the current challenges in this area. We conclude with a discussion of anticipated advancements, emerging trends, and future directions in the construction of protein sequence databases for metaproteomics.
Collapse
Affiliation(s)
- Muzaffer Arıkan
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, Istanbul 34134, Türkiye
| | - Başak Atabay
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Türkiye
| |
Collapse
|
6
|
Jin J, Wu Y, Cao P, Zheng X, Zhang Q, Chen Y. Potential and challenge in accelerating high-value conversion of CO 2 in microbial electrosynthesis system via data-driven approach. BIORESOURCE TECHNOLOGY 2024; 412:131380. [PMID: 39214179 DOI: 10.1016/j.biortech.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microbial electrosynthesis for CO2 utilization (MESCU) producing valuable chemicals with high energy density has garnered attention due to its long-term stability and high coulombic efficiency. The data-driven approaches offer a promising avenue by leveraging existing data to uncover the underlying patterns. This comprehensive review firstly uncovered the potentials of utilizing data-driven approaches to enhance high-value conversion of CO2 via MESCU. Firstly, critical challenges of MESCU advancing have been identified, including reactor configuration, cathode design, and microbial analysis. Subsequently, the potential of data-driven approaches to tackle the corresponding challenges, encompassing the identification of pivotal parameters governing reactor setup and cathode design, alongside the decipheration of omics data derived from microbial communities, have been discussed. Correspondingly, the future direction of data-driven approaches in assisting the application of MESCU has been addressed. This review offers guidance and theoretical support for future data-driven applications to accelerate MESCU research and potential industrialization.
Collapse
Affiliation(s)
- Jiasheng Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Peiyu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
de Jong SI, Wissink M, Yildirim K, Pabst M, van Loosdrecht MCM, McMillan DGG. Quantitative proteomics reveals oxygen-induced adaptations in Caldalkalibacillus thermarum TA2.A1 microaerobic chemostat cultures. Front Microbiol 2024; 15:1468929. [PMID: 39529675 PMCID: PMC11551716 DOI: 10.3389/fmicb.2024.1468929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024] Open
Abstract
The thermoalkaliphile Caldalkalibacillus thermarum possesses a highly branched respiratory chain. These primarily facilitate growth at a wide range of dissolved oxygen levels. The aim of this study was to investigate the regulation of C. thermarum respiratory chain. C. thermarum was cultivated in chemostat bioreactors with a range of oxygen levels (0.25% O2-4.2% O2). Proteomic analysis unexpectedly showed that both the type I and the type II NADH dehydrogenase present are constitutive. The two terminal oxidases detected were the cytochrome c:oxygen aa 3 oxidase, whose abundance was highest at 4.2% O2. The cytochrome c:oxygen ba 3 oxidase was more abundant at most other O2 levels, but its abundance started to decline below 0.42% O2. We expected this would result in the emergence of the cytochrome c:oxygen bb 3 complex or the menaquinol:oxygen bd complex, the other two terminal oxidases of C. thermarum; but neither was detected. Furthermore, the sodium-proton antiporter complex Mrp was downregulated under the lower oxygen levels. Normally, in alkaliphiles, this enzyme is considered crucial for sodium homeostasis. We propose that the existence of a sodium:acetate exporter decreases the requirement for Mrp under strong oxygen limitation.
Collapse
Affiliation(s)
- Samuel I. de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Martijn Wissink
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Kadir Yildirim
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | - Duncan G. G. McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- School of Biological Sciences, University of Reading, Whiteknights, United Kingdom
| |
Collapse
|
8
|
Sun Y, Xing Z, Liang S, Miao Z, Zhuo LB, Jiang W, Zhao H, Gao H, Xie Y, Zhou Y, Yue L, Cai X, Chen YM, Zheng JS, Guo T. metaExpertPro: A Computational Workflow for Metaproteomics Spectral Library Construction and Data-Independent Acquisition Mass Spectrometry Data Analysis. Mol Cell Proteomics 2024; 23:100840. [PMID: 39278598 PMCID: PMC11795700 DOI: 10.1016/j.mcpro.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Analysis of large-scale data-independent acquisition mass spectrometry metaproteomics data remains a computational challenge. Here, we present a computational pipeline called metaExpertPro for metaproteomics data analysis. This pipeline encompasses spectral library generation using data-dependent acquisition MS, protein identification and quantification using data-independent acquisition mass spectrometry, functional and taxonomic annotation, as well as quantitative matrix generation for both microbiota and hosts. By integrating FragPipe and DIA-NN, metaExpertPro offers compatibility with both Orbitrap and timsTOF MS instruments. To evaluate the depth and accuracy of identification and quantification, we conducted extensive assessments using human fecal samples and benchmark tests. Performance tests conducted on human fecal samples indicated that metaExpertPro quantified an average of 45,000 peptides in a 60-min diaPASEF injection. Notably, metaExpertPro outperformed three existing software tools by characterizing a higher number of peptides and proteins. Importantly, metaExpertPro maintained a low factual false discovery rate of approximately 5% for protein groups across four benchmark tests. Applying a filter of five peptides per genus, metaExpertPro achieved relatively high accuracy (F-score = 0.67-0.90) in genus diversity and showed a high correlation (rSpearman = 0.73-0.82) between the measured and true genus relative abundance in benchmark tests. Additionally, the quantitative results at the protein, taxonomy, and function levels exhibited high reproducibility and consistency across the commonly adopted public human gut microbial protein databases IGC and UHGP. In a metaproteomic analysis of dyslipidemia patients, metaExpertPro revealed characteristic alterations in microbial functions and potential interactions between the microbiota and the host.
Collapse
Affiliation(s)
- Yingying Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ziyuan Xing
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Jiang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Hui Zhao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Yue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Raba G, Luis AS, Schneider H, Morell I, Jin C, Adamberg S, Hansson GC, Adamberg K, Arike L. Metaproteomics reveals parallel utilization of colonic mucin glycans and dietary fibers by the human gut microbiota. iScience 2024; 27:110093. [PMID: 38947523 PMCID: PMC11214529 DOI: 10.1016/j.isci.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
A diet lacking dietary fibers promotes the expansion of gut microbiota members that can degrade host glycans, such as those on mucins. The microbial foraging on mucin has been associated with disruptions of the gut-protective mucus layer and colonic inflammation. Yet, it remains unclear how the co-utilization of mucin and dietary fibers affects the microbiota composition and metabolic activity. Here, we used 14 dietary fibers and porcine colonic and gastric mucins to study the dynamics of mucin and dietary fiber utilization by the human fecal microbiota in vitro. Combining metaproteome and metabolites analyses revealed the central role of the Bacteroides genus in the utilization of complex fibers together with mucin while Akkermansia muciniphila was the main utilizer of sole porcine colonic mucin but not gastric mucin. This study gives a broad overview of the colonic environment in response to dietary and host glycan availability.
Collapse
Affiliation(s)
- Grete Raba
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ana S. Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Hannah Schneider
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Indrek Morell
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kaarel Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
- Center of Food and Fermentation Technologies, 12618 Tallinn, Estonia
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
10
|
Kleikamp HBC, Palacios PA, Kofoed MVW, Papacharalampos G, Bentien A, Nielsen JL. The Selenoproteome as a Dynamic Response Mechanism to Oxidative Stress in Hydrogenotrophic Methanogenic Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6637-6646. [PMID: 38580315 PMCID: PMC11025550 DOI: 10.1021/acs.est.3c07725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.
Collapse
Affiliation(s)
- Hugo B. C. Kleikamp
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Paola A. Palacios
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Michael V. W. Kofoed
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Georgios Papacharalampos
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Anders Bentien
- Department
of Biological and Chemical Engineering, Aarhus University, Åbogade 40, 8200 Aarhus, Denmark
| | - Jeppe L. Nielsen
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
11
|
Dumas T, Martinez Pinna R, Lozano C, Radau S, Pible O, Grenga L, Armengaud J. The astounding exhaustiveness and speed of the Astral mass analyzer for highly complex samples is a quantum leap in the functional analysis of microbiomes. MICROBIOME 2024; 12:46. [PMID: 38454512 PMCID: PMC10918999 DOI: 10.1186/s40168-024-01766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND By analyzing the proteins which are the workhorses of biological systems, metaproteomics allows us to list the taxa present in any microbiota, monitor their relative biomass, and characterize the functioning of complex biological systems. RESULTS Here, we present a new strategy for rapidly determining the microbial community structure of a given sample and designing a customized protein sequence database to optimally exploit extensive tandem mass spectrometry data. This approach leverages the capabilities of the first generation of Quadrupole Orbitrap mass spectrometer incorporating an asymmetric track lossless (Astral) analyzer, offering rapid MS/MS scan speed and sensitivity. We took advantage of data-dependent acquisition and data-independent acquisition strategies using a peptide extract from a human fecal sample spiked with precise amounts of peptides from two reference bacteria. CONCLUSIONS Our approach, which combines both acquisition methods, proves to be time-efficient while processing extensive generic databases and massive datasets, achieving a coverage of more than 122,000 unique peptides and 38,000 protein groups within a 30-min DIA run. This marks a significant departure from current state-of-the-art metaproteomics methodologies, resulting in broader coverage of the metabolic pathways governing the biological system. In combination, our strategy and the Astral mass analyzer represent a quantum leap in the functional analysis of microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Thibaut Dumas
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | | | - Clément Lozano
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | - Sonja Radau
- Thermo Fisher Scientific GmbH, 63303, Dreieich, Germany
| | - Olivier Pible
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | - Lucia Grenga
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200, Bagnols-Sur-Cèze, France.
| |
Collapse
|
12
|
Roothans N, Gabriëls M, Abeel T, Pabst M, van Loosdrecht MCM, Laureni M. Aerobic denitrification as an N2O source from microbial communities. THE ISME JOURNAL 2024; 18:wrae116. [PMID: 38913498 PMCID: PMC11272060 DOI: 10.1093/ismejo/wrae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas of primarily microbial origin. Oxic and anoxic emissions are commonly ascribed to autotrophic nitrification and heterotrophic denitrification, respectively. Beyond this established dichotomy, we quantitatively show that heterotrophic denitrification can significantly contribute to aerobic nitrogen turnover and N2O emissions in complex microbiomes exposed to frequent oxic/anoxic transitions. Two planktonic, nitrification-inhibited enrichment cultures were established under continuous organic carbon and nitrate feeding, and cyclic oxygen availability. Over a third of the influent organic substrate was respired with nitrate as electron acceptor at high oxygen concentrations (>6.5 mg/L). N2O accounted for up to one-quarter of the nitrate reduced under oxic conditions. The enriched microorganisms maintained a constitutive abundance of denitrifying enzymes due to the oxic/anoxic frequencies exceeding their protein turnover-a common scenario in natural and engineered ecosystems. The aerobic denitrification rates are ascribed primarily to the residual activity of anaerobically synthesised enzymes. From an ecological perspective, the selection of organisms capable of sustaining significant denitrifying activity during aeration shows their competitive advantage over other heterotrophs under varying oxygen availabilities. Ultimately, we propose that the contribution of heterotrophic denitrification to aerobic nitrogen turnover and N2O emissions is currently underestimated in dynamic environments.
Collapse
Affiliation(s)
- Nina Roothans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Minke Gabriëls
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, van Mourik Broekmanweg 6, Delft 2628 XE, the Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Michele Laureni
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
13
|
Klaproth-Andrade D, Hingerl J, Bruns Y, Smith NH, Träuble J, Wilhelm M, Gagneur J. Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing. Nat Commun 2024; 15:151. [PMID: 38167372 PMCID: PMC10762064 DOI: 10.1038/s41467-023-44323-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Unlike for DNA and RNA, accurate and high-throughput sequencing methods for proteins are lacking, hindering the utility of proteomics in applications where the sequences are unknown including variant calling, neoepitope identification, and metaproteomics. We introduce Spectralis, a de novo peptide sequencing method for tandem mass spectrometry. Spectralis leverages several innovations including a convolutional neural network layer connecting peaks in spectra spaced by amino acid masses, proposing fragment ion series classification as a pivotal task for de novo peptide sequencing, and a peptide-spectrum confidence score. On spectra for which database search provided a ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly doubling state-of-the-art sensitivity. Application to unidentified spectra confirmed its superiority and showcased its applicability to variant calling. Altogether, these algorithmic innovations and the substantial sensitivity increase in the high-precision range constitute an important step toward broadly applicable peptide sequencing.
Collapse
Affiliation(s)
- Daniela Klaproth-Andrade
- Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| | - Johannes Hingerl
- Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Yanik Bruns
- Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Nicholas H Smith
- Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Jakob Träuble
- Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Mathias Wilhelm
- Munich Data Science Institute, Technical University of Munich, Garching, Germany.
- Computational Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Julien Gagneur
- Computational Molecular Medicine, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Munich Data Science Institute, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
14
|
Holstein T, Muth T. Bioinformatic Workflows for Metaproteomics. Methods Mol Biol 2024; 2820:187-213. [PMID: 38941024 DOI: 10.1007/978-1-0716-3910-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The strong influence of microbiomes on areas such as ecology and human health has become widely recognized in the past years. Accordingly, various techniques for the investigation of the composition and function of microbial community samples have been developed. Metaproteomics, the comprehensive analysis of the proteins from microbial communities, allows for the investigation of not only the taxonomy but also the functional and quantitative composition of microbiome samples. Due to the complexity of the investigated communities, methods developed for single organism proteomics cannot be readily applied to metaproteomic samples. For this purpose, methods specifically tailored to metaproteomics are required. In this work, a detailed overview of current bioinformatic solutions and protocols in metaproteomics is given. After an introduction to the proteomic database search, the metaproteomic post-processing steps are explained in detail. Ten specific bioinformatic software solutions are focused on, covering various steps including database-driven identification and quantification as well as taxonomic and functional assignment.
Collapse
Affiliation(s)
- Tanja Holstein
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany
- VIB-UGent Center for Medical Biotechnology, VIB and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland
| | - Thilo Muth
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany.
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland.
| |
Collapse
|
15
|
Kleikamp HBC, van der Zwaan R, van Valderen R, van Ede JM, Pronk M, Schaasberg P, Allaart MT, van Loosdrecht MCM, Pabst M. NovoLign: metaproteomics by sequence alignment. ISME COMMUNICATIONS 2024; 4:ycae121. [PMID: 39493671 PMCID: PMC11530927 DOI: 10.1093/ismeco/ycae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Tremendous advances in mass spectrometric and bioinformatic approaches have expanded proteomics into the field of microbial ecology. The commonly used spectral annotation method for metaproteomics data relies on database searching, which requires sample-specific databases obtained from whole metagenome sequencing experiments. However, creating these databases is complex, time-consuming, and prone to errors, potentially biasing experimental outcomes and conclusions. This asks for alternative approaches that can provide rapid and orthogonal insights into metaproteomics data. Here, we present NovoLign, a de novo metaproteomics pipeline that performs sequence alignment of de novo sequences from complete metaproteomics experiments. The pipeline enables rapid taxonomic profiling of complex communities and evaluates the taxonomic coverage of metaproteomics outcomes obtained from database searches. Furthermore, the NovoLign pipeline supports the creation of reference sequence databases for database searching to ensure comprehensive coverage. We assessed the NovoLign pipeline for taxonomic coverage and false positive annotations using a wide range of in silico and experimental data, including pure reference strains, laboratory enrichment cultures, synthetic communities, and environmental microbial communities. In summary, we present NovoLign, a de novo metaproteomics pipeline that employs large-scale sequence alignment to enable rapid taxonomic profiling, evaluation of database searching outcomes, and the creation of reference sequence databases. The NovoLign pipeline is publicly available via: https://github.com/hbckleikamp/NovoLign.
Collapse
Affiliation(s)
- Hugo B C Kleikamp
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Ramon van der Zwaan
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Ramon van Valderen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Jitske M van Ede
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Pim Schaasberg
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Maximilienne T Allaart
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| |
Collapse
|
16
|
Kleikamp HBC, Grouzdev D, Schaasberg P, van Valderen R, van der Zwaan R, Wijgaart RVD, Lin Y, Abbas B, Pronk M, van Loosdrecht MCM, Pabst M. Metaproteomics, metagenomics and 16S rRNA sequencing provide different perspectives on the aerobic granular sludge microbiome. WATER RESEARCH 2023; 246:120700. [PMID: 37866247 DOI: 10.1016/j.watres.2023.120700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
The tremendous progress in sequencing technologies has made DNA sequencing routine for microbiome studies. Additionally, advances in mass spectrometric techniques have extended conventional proteomics into the field of microbial ecology. However, systematic studies that provide a better understanding of the complementary nature of these 'omics' approaches, particularly for complex environments such as wastewater treatment sludge, are urgently needed. Here, we describe a comparative metaomics study on aerobic granular sludge from three different wastewater treatment plants. For this, we employed metaproteomics, whole metagenome, and 16S rRNA amplicon sequencing to study the same granule material with uniform size. We furthermore compare the taxonomic profiles using the Genome Taxonomy Database (GTDB) to enhance the comparability between the different approaches. Though the major taxonomies were consistently identified in the different aerobic granular sludge samples, the taxonomic composition obtained by the different omics techniques varied significantly at the lower taxonomic levels, which impacts the interpretation of the nutrient removal processes. Nevertheless, as demonstrated by metaproteomics, the genera that were consistently identified in all techniques cover the majority of the protein biomass. The established metaomics data and the contig classification pipeline are publicly available, which provides a valuable resource for further studies on metabolic processes in aerobic granular sludge.
Collapse
Affiliation(s)
- Hugo B C Kleikamp
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - Pim Schaasberg
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van Valderen
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ramon van der Zwaan
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Roel van de Wijgaart
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
17
|
Allaart MT, Fox BB, Nettersheim IHMS, Pabst M, Sousa DZ, Kleerebezem R. Physiological and stoichiometric characterization of ethanol-based chain elongation in the absence of short-chain carboxylic acids. Sci Rep 2023; 13:17370. [PMID: 37833311 PMCID: PMC10576071 DOI: 10.1038/s41598-023-43682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Hexanoate is a valuable chemical that can be produced by microorganisms that convert short-chain- to medium-chain carboxylic acids through a process called chain elongation. These microorganisms usually produce mixtures of butyrate and hexanoate from ethanol and acetate, but direct conversion of ethanol to hexanoate is theoretically possible. Steering microbial communities to ethanol-only elongation to hexanoate circumvents the need for acetate addition and simplifies product separation. The biological feasibility of ethanol elongation to hexanoate was validated in batch bioreactor experiments with a Clostridium kluyveri-dominated enrichment culture incubated with ethanol, acetate and butyrate in different ratios. Frequent liquid sampling combined with high-resolution off-gas measurements allowed to monitor metabolic behavior. In experiments with an initial ethanol-to-acetate ratio of 6:1, acetate depletion occurred after ± 35 h of fermentation, which triggered a metabolic shift to direct conversion of ethanol to hexanoate despite the availability of butyrate (± 40 mCmol L-1). When only ethanol and no external electron acceptor was supplied, stable ethanol to hexanoate conversion could be maintained until 60-90 mCmol L-1 of hexanoate was produced. After this, transient production of either acetate and butyrate or butyrate and hexanoate was observed, requiring a putative reversal of the Rnf complex. This was not observed before acetate depletion or in presence of low concentrations (40-60 mCmol L-1) of butyrate, suggesting a stabilizing or regulatory role of butyrate or butyrate-related catabolic intermediates. This study sheds light on previously unknown versatility of chain elongating microbes and provides new avenues for optimizing (waste) bioconversion for hexanoate production.
Collapse
Affiliation(s)
| | - Bartholomeus B Fox
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
18
|
Wuyts S, Alves R, Zimmermann‐Kogadeeva M, Nishijima S, Blasche S, Driessen M, Geyer PE, Hercog R, Kartal E, Maier L, Müller JB, Garcia Santamarina S, Schmidt TSB, Sevin DC, Telzerow A, Treit PV, Wenzel T, Typas A, Patil KR, Mann M, Kuhn M, Bork P. Consistency across multi-omics layers in a drug-perturbed gut microbial community. Mol Syst Biol 2023; 19:e11525. [PMID: 37485738 PMCID: PMC10495815 DOI: 10.15252/msb.202311525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Multi-omics analyses are used in microbiome studies to understand molecular changes in microbial communities exposed to different conditions. However, it is not always clear how much each omics data type contributes to our understanding and whether they are concordant with each other. Here, we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers (16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics and metabolomics). We find that all the omics methods with species resolution are highly consistent in estimating relative species abundances. Furthermore, different omics methods complement each other for capturing functional changes. For example, while nearly all the omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control. Metabolomics revealed a decrease in oligosaccharide uptake, likely caused by Bacteroidota depletion. Our study highlights how multi-omics datasets can be utilized to reveal complex molecular responses to external perturbations in microbial communities.
Collapse
Affiliation(s)
- Sander Wuyts
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Renato Alves
- European Molecular Biology LaboratoryHeidelbergGermany
| | | | | | - Sonja Blasche
- European Molecular Biology LaboratoryHeidelbergGermany
- Medical Research Council Toxicology UnitCambridgeUK
| | | | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Rajna Hercog
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Ece Kartal
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Lisa Maier
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Johannes B Müller
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Sarela Garcia Santamarina
- European Molecular Biology LaboratoryHeidelbergGermany
- Present address:
MOSTMICRO Unit, Instituto de Tecnologia Quimica e BiologicaUniversidade Nova de LisboaOeirasPortugal
| | | | | | - Anja Telzerow
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Peter V Treit
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Tobias Wenzel
- European Molecular Biology LaboratoryHeidelbergGermany
- Present address:
Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Catolica de ChileSantiagoChile
| | | | - Kiran R Patil
- European Molecular Biology LaboratoryHeidelbergGermany
- Medical Research Council Toxicology UnitCambridgeUK
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Proteomics Program, NNF Center for Protein Research, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Michael Kuhn
- European Molecular Biology LaboratoryHeidelbergGermany
| | - Peer Bork
- European Molecular Biology LaboratoryHeidelbergGermany
- Max Delbrück Centre for Molecular MedicineBerlinGermany
- Yonsei Frontier Lab (YFL)Yonsei UniversitySeoulSouth Korea
- Department of Bioinformatics, BiocenterUniversity of WürzburgWürzburgGermany
| |
Collapse
|
19
|
de Jong SI, Sorokin DY, van Loosdrecht MCM, Pabst M, McMillan DGG. Membrane proteome of the thermoalkaliphile Caldalkalibacillus thermarum TA2.A1. Front Microbiol 2023; 14:1228266. [PMID: 37577439 PMCID: PMC10416648 DOI: 10.3389/fmicb.2023.1228266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Proteomics has greatly advanced the understanding of the cellular biochemistry of microorganisms. The thermoalkaliphile Caldalkalibacillus thermarum TA2.A1 is an organism of interest for studies into how alkaliphiles adapt to their extreme lifestyles, as it can grow from pH 7.5 to pH 11. Within most classes of microbes, the membrane-bound electron transport chain (ETC) enables a great degree of adaptability and is a key part of metabolic adaptation. Knowing what membrane proteins are generally expressed is crucial as a benchmark for further studies. Unfortunately, membrane proteins are the category of proteins hardest to detect using conventional cellular proteomics protocols. In part, this is due to the hydrophobicity of membrane proteins as well as their general lower absolute abundance, which hinders detection. Here, we performed a combination of whole cell lysate proteomics and proteomics of membrane extracts solubilised with either SDS or FOS-choline-12 at various temperatures. The combined methods led to the detection of 158 membrane proteins containing at least a single transmembrane helix (TMH). Within this data set we revealed a full oxidative phosphorylation pathway as well as an alternative NADH dehydrogenase type II (Ndh-2) and a microaerophilic cytochrome oxidase ba3. We also observed C. thermarum TA2.A1 expressing transporters for ectoine and glycine betaine, compounds that are known osmolytes that may assist in maintaining a near neutral internal pH when the external pH is highly alkaline.
Collapse
Affiliation(s)
- Samuel I. de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Dimitry Y. Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
20
|
Quitón-Tapia S, Trueba-Santiso A, Garrido JM, Suárez S, Omil F. Metalloenzymes play major roles to achieve high-rate nitrogen removal in N-damo communities: Lessons from metaproteomics. BIORESOURCE TECHNOLOGY 2023:129476. [PMID: 37429551 DOI: 10.1016/j.biortech.2023.129476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Nitrite-driven anaerobic methane oxidation (N-damo) is a promising biological process to achieve carbon-neutral wastewater treatment solutions, aligned with the sustainable development goals. Here, the enzymatic activities in a membrane bioreactor highly enriched in N-damo bacteria operated at high nitrogen removal rates were investigated. Metaproteomic analyses, with a special focus on metalloenzymes, revealed the complete enzymatic route of N-damo including their unique nitric oxide dismutases. The relative protein abundance evidenced that "Ca. Methylomirabilis lanthanidiphila" was the predominant N-damo species, attributed to the induction of its lanthanide-binding methanol dehydrogenase in the presence of cerium. Metaproteomics also disclosed the activity of the accompanying taxa in denitrification, methylotrophy and methanotrophy. The most abundant functional metalloenzymes from this community require copper, iron, and cerium as cofactors which was correlated with the metal consumptions in the bioreactor. This study highlights the usefulness of metaproteomics for evaluating the enzymatic activities in engineering systems to optimize microbial management.
Collapse
Affiliation(s)
- Silvana Quitón-Tapia
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Alba Trueba-Santiso
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain.
| | - Juan M Garrido
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Sonia Suárez
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Francisco Omil
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
21
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. 'Multi-omics' data integration: applications in probiotics studies. NPJ Sci Food 2023; 7:25. [PMID: 37277356 DOI: 10.1038/s41538-023-00199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The concept of probiotics is witnessing increasing attention due to its benefits in influencing the host microbiome and the modulation of host immunity through the strengthening of the gut barrier and stimulation of antibodies. These benefits, combined with the need for improved nutraceuticals, have resulted in the extensive characterization of probiotics leading to an outburst of data generated using several 'omics' technologies. The recent development in system biology approaches to microbial science is paving the way for integrating data generated from different omics techniques for understanding the flow of molecular information from one 'omics' level to the other with clear information on regulatory features and phenotypes. The limitations and tendencies of a 'single omics' application to ignore the influence of other molecular processes justify the need for 'multi-omics' application in probiotics selections and understanding its action on the host. Different omics techniques, including genomics, transcriptomics, proteomics, metabolomics and lipidomics, used for studying probiotics and their influence on the host and the microbiome are discussed in this review. Furthermore, the rationale for 'multi-omics' and multi-omics data integration platforms supporting probiotics and microbiome analyses was also elucidated. This review showed that multi-omics application is useful in selecting probiotics and understanding their functions on the host microbiome. Hence, recommend a multi-omics approach for holistically understanding probiotics and the microbiome.
Collapse
Affiliation(s)
- Iliya Dauda Kwoji
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Olayinka Ayobami Aiyegoro
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Northwest, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, 4090, Durban, South Africa.
| |
Collapse
|
22
|
Trebuch LM, Sohier J, Altenburg S, Oyserman BO, Pronk M, Janssen M, Vet LEM, Wijffels RH, Fernandes TV. Enhancing phosphorus removal of photogranules by incorporating polyphosphate accumulating organisms. WATER RESEARCH 2023; 235:119748. [PMID: 36944303 DOI: 10.1016/j.watres.2023.119748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/21/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Photogranules are a novel wastewater treatment technology that can utilize the sun's energy to treat water with lower energy input and have great potential for nutrient recovery applications. They have been proven to efficiently remove nitrogen and carbon but show lower conversion rates for phosphorus compared to established treatment systems, such as aerobic granular sludge. In this study, we successfully introduced polyphosphate accumulating organisms (PAOs) to an established photogranular culture. We operated photobioreactors in sequencing batch mode with six cycles per day and alternating anaerobic (dark) and aerobic (light) phases. We were able to increase phosphorus removal/recovery by 6 times from 5.4 to 30 mg/L/d while maintaining similar nitrogen and carbon removal compared to photogranules without PAOs. To maintain PAOs activity, alternating anaerobic feast and aerobic famine conditions were required. In future applications, where aerobic conditions are dependent on in-situ oxygenation via photosynthesis, the process will rely on sunlight availability. Therefore, we investigated the feasibility of the process under diurnal cycles with a 12-h anaerobic phase during nighttime and six short cycles during the 12 h daytime. The 12-h anaerobic phase had no adverse effect on the PAOs and phototrophs. Due to the extension of one anaerobic phase to 12 h the six aerobic phases were shortened by 47% and consequently decreased the light hours per day. This resulted in a decrease of phototrophs, which reduced nitrogen removal and biomass productivity up to 30%. Finally, we discuss and suggest strategies to apply PAO-enriched photogranules at large-scale.
Collapse
Affiliation(s)
- Lukas M Trebuch
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands; Bioprocess Engineering, AlgaePARC Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Jasper Sohier
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Sido Altenburg
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Ben O Oyserman
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands; Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands; Royal HaskoningDHV, Laan1914 35, Amersfoort, 3800 AL, The Netherlands
| | - Marcel Janssen
- Bioprocess Engineering, AlgaePARC Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Louise E M Vet
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
23
|
Mappa C, Alpha-Bazin B, Pible O, Armengaud J. Mix24X, a Lab-Assembled Reference to Evaluate Interpretation Procedures for Tandem Mass Spectrometry Proteotyping of Complex Samples. Int J Mol Sci 2023; 24:8634. [PMID: 37239979 PMCID: PMC10218423 DOI: 10.3390/ijms24108634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Correct identification of the microorganisms present in a complex sample is a crucial issue. Proteotyping based on tandem mass spectrometry can help establish an inventory of organisms present in a sample. Evaluation of bioinformatics strategies and tools for mining the recorded datasets is essential to establish confidence in the results obtained and to improve these pipelines in terms of sensitivity and accuracy. Here, we propose several tandem mass spectrometry datasets recorded on an artificial reference consortium comprising 24 bacterial species. This assemblage of environmental and pathogenic bacteria covers 20 different genera and 5 bacterial phyla. The dataset comprises difficult cases, such as the Shigella flexneri species, which is closely related to Escherichia coli, and several highly sequenced clades. Different acquisition strategies simulate real-life scenarios: from rapid survey sampling to exhaustive analysis. We provide access to individual proteomes of each bacterium separately to provide a rational basis for evaluating the assignment strategy of MS/MS spectra when recorded from complex mixtures. This resource should provide an interesting common reference for developers who wish to compare their proteotyping tools and for those interested in evaluating protein assignment when dealing with complex samples, such as microbiomes.
Collapse
Affiliation(s)
- Charlotte Mappa
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France (O.P.)
- Laboratoire Innovations Technologiques Pour la Détection et le Diagnostic (Li2D), Université de Montpellier, 30207 Bagnols sur Cèze, France
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France (O.P.)
| | - Olivier Pible
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France (O.P.)
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France (O.P.)
| |
Collapse
|
24
|
Corbera-Rubio F, Laureni M, Koudijs N, Müller S, van Alen T, Schoonenberg F, Lücker S, Pabst M, van Loosdrecht MCM, van Halem D. Meta-omics profiling of full-scale groundwater rapid sand filters explains stratification of iron, ammonium and manganese removals. WATER RESEARCH 2023; 233:119805. [PMID: 36868119 DOI: 10.1016/j.watres.2023.119805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.
Collapse
Affiliation(s)
| | - Michele Laureni
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands.
| | - Nienke Koudijs
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | - Simon Müller
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | - Theo van Alen
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, AJ Nijmegen 6525, The Netherlands
| | | | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, AJ Nijmegen 6525, The Netherlands
| | - Martin Pabst
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | | | - Doris van Halem
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| |
Collapse
|
25
|
Tomás-Martínez S, Zwolsman EJ, Merlier F, Pabst M, Lin Y, van Loosdrecht MCM, Weissbrodt DG. Turnover of the extracellular polymeric matrix of granules performing biological phosphate removal. Appl Microbiol Biotechnol 2023; 107:1997-2009. [PMID: 36759376 PMCID: PMC10006046 DOI: 10.1007/s00253-023-12421-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Polyphosphate accumulating organisms (PAOs) are responsible for enhanced biological phosphate removal (EBPR) from wastewater, where they grow embedded in a matrix of extracellular polymeric substances (EPS). EPSs comprise a mixture of biopolymers like polysaccharides or (glyco)proteins. Despite previous studies, little is known about the dynamics of EPS in mixed cultures, and their production by PAOs and potential consumption by flanking microbes. EPSs are biodegradable and have been suggested to be a substrate for other organisms in the community. Studying EPS turnover can help elucidate their biosynthesis and biodegradation cycles. We analyzed the turnover of proteins and polysaccharides in the EPS of an enrichment culture of PAOs relative to the turnover of internal proteins. An anaerobic-aerobic sequencing batch reactor (SBR) simulating EBPR conditions was operated to enrich for PAOs. After achieving a stable culture, carbon source was switched to uniformly 13C-labeled acetate. Samples were collected at the end of each aerobic phase. EPSs were extracted by alkaline treatment. 13C enrichment in proteins and sugars (after hydrolysis of polysaccharides) in the extracted EPS were measured by mass spectrometry. The average turnover rate of sugars and proteins (0.167 and 0.192 d-1 respectively) was higher than the expected value based on the solid removal rate (0.132 d-1), and no significant difference was observed between intracellular and extracellular proteins. This indicates that EPS from the PAO enriched community is not selectively degraded by flanking populations under stable EBPR process conditions. Instead, we observed general decay of biomass, which corresponds to a value of 0.048 d-1. KEY POINTS: • Proteins showed a higher turnover rate than carbohydrates. • Turnover of EPS was similar to the turnover of intracellular proteins. • EPS is not preferentially consumed by flanking populations.
Collapse
Affiliation(s)
- Sergio Tomás-Martínez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands.
| | - Erwin J Zwolsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Franck Merlier
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, 60319, 60203, Compiègne Cedex, CS, France
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| |
Collapse
|
26
|
Armengaud J. Metaproteomics to understand how microbiota function: The crystal ball predicts a promising future. Environ Microbiol 2023; 25:115-125. [PMID: 36209500 PMCID: PMC10091800 DOI: 10.1111/1462-2920.16238] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/21/2023]
Abstract
In the medical, environmental, and biotechnological fields, microbial communities have attracted much attention due to their roles and numerous possible applications. The study of these communities is challenging due to their diversity and complexity. Innovative methods are needed to identify the taxonomic components of individual microbiota, their changes over time, and to determine how microoorganisms interact and function. Metaproteomics is based on the identification and quantification of proteins, and can potentially provide this full picture. Due to the wide molecular panorama and functional insights it provides, metaproteomics is gaining momentum in microbiome and holobiont research. Its full potential should be unleashed in the coming years with progress in speed and cost of analyses. In this exploratory crystal ball exercise, I discuss the technical and conceptual advances in metaproteomics that I expect to drive innovative research over the next few years in microbiology. I also debate the concepts of 'microbial dark matter' and 'Metaproteomics-Assembled Proteomes (MAPs)' and present some long-term prospects for metaproteomics in clinical diagnostics and personalized medicine, environmental monitoring, agriculture, and biotechnology.
Collapse
Affiliation(s)
- Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| |
Collapse
|
27
|
Páez-Watson T, van Loosdrecht MCM, Wahl SA. Predicting the impact of temperature on metabolic fluxes using resource allocation modelling: Application to polyphosphate accumulating organisms. WATER RESEARCH 2023; 228:119365. [PMID: 36413834 DOI: 10.1016/j.watres.2022.119365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The understanding of microbial communities and the biological regulation of its members is crucial for implementation of novel technologies using microbial ecology. One poorly understood metabolic principle of microbial communities is resource allocation and biosynthesis. Resource allocation theory in polyphosphate accumulating organisms (PAOs) is limited as a result of their slow imposed growth rate (typical sludge retention times of at least 4 days) and limitations to quantify changes in biomass components over a 6 hours cycle (less than 10% of their growth). As a result, there is no direct evidence supporting that biosynthesis is an exclusive aerobic process in PAOs that alternate continuously between anaerobic and aerobic phases. Here, we apply resource allocation metabolic flux analysis to study the optimal phenotype of PAOs over a temperature range of 4 °C to 20 °C. The model applied in this research allowed to identify optimal metabolic strategies in a core metabolic model with limited constraints based on biological principles. The addition of a constraint limiting biomass synthesis to be an exclusive aerobic process changed the metabolic behaviour and improved the predictability of the model over the studied temperature range by closing the gap between prediction and experimental findings. The results validate the assumption of limited anaerobic biosynthesis in PAOs, specifically "Candidatus Accumulibacter" related species. Interestingly, the predicted growth yield was lower, suggesting that there are mechanistic barriers for anaerobic growth not yet understood nor reflected in the current models of PAOs. Moreover, we identified strategies of resource allocation applied by PAOs at different temperatures as a result of the decreased catalytic efficiencies of their biochemical reactions. Understanding resource allocation is paramount in the study of PAOs and their currently unknown complex metabolic regulation, and metabolic modelling based on biological first principles provides a useful tool to develop a mechanistic understanding.
Collapse
Affiliation(s)
- Timothy Páez-Watson
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
28
|
Alloul A, Van Kampen W, Cerruti M, Wittouck S, Pabst M, Weissbrodt D. Exploring the role of antimicrobials in the selective growth of purple phototrophic bacteria through genome mining and agar spot assays. Lett Appl Microbiol 2022; 75:1275-1285. [PMID: 35938312 PMCID: PMC9804395 DOI: 10.1111/lam.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
Purple non-sulphur bacteria (PNSB) are an emerging group of microbes attractive for applied microbiology applications such as wastewater treatment, plant biostimulants, microbial protein, polyhydroxyalkanoates and H2 production. These photoorganoheterotrophic microbes have the unique ability to grow selectively on organic carbon in anaerobic photobioreactors. This so-called selectivity implies that the microbial community will have a low diversity and a high abundance of a particular PNSB species. Recently, it has been shown that certain PNSB strains can produce antimicrobials, yet it remains unclear whether these contribute to competitive inhibition. This research aimed to understand which type of antimicrobial PNSB produce and identify whether these compounds contribute to their selective growth. Mining 166 publicly-available PNSB genomes using the computational tool BAGEL showed that 59% contained antimicrobial encoding regions, more specifically biosynthetic clusters of bacteriocins and non-ribosomal peptide synthetases. Inter- and intra-species inhibition was observed in agar spot assays for Rhodobacter blasticus EBR2 and Rhodopseudomonas palustris EBE1 with inhibition zones of, respectively, 5.1 and 1.5-5.7 mm. Peptidomic analysis detected a peptide fragment in the supernatant (SVLQLLR) that had a 100% percentage identity match with a known non-ribosomal peptide synthetase with antimicrobial activity.
Collapse
Affiliation(s)
- A. Alloul
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands,Department of Bioscience EngineeringUniversity of AntwerpAntwerpenBelgium
| | - W. Van Kampen
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - M. Cerruti
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - S. Wittouck
- Department of Bioscience EngineeringUniversity of AntwerpAntwerpenBelgium
| | - M. Pabst
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - D.G. Weissbrodt
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| |
Collapse
|
29
|
Cerruti M, Kim JH, Pabst M, Van Loosdrecht MCM, Weissbrodt DG. Light intensity defines growth and photopigment content of a mixed culture of purple phototrophic bacteria. Front Microbiol 2022; 13:1014695. [DOI: 10.3389/fmicb.2022.1014695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Purple bacteria (PPB), anoxygenic photoorganoheterotrophic organisms with a hyper-versatile metabolism and high biomass yields over substrate, are promising candidates for the recovery of nutrient resources from wastewater. Infrared light is a pivotal parameter to control and design PPB-based resource recovery. However, the effects of light intensities on the physiology and selection of PPB in mixed cultures have not been studied to date. Here, we examined the effect of infrared irradiance on PPB physiology, enrichment, and growth over a large range of irradiance (0 to 350 W m−2) in an anaerobic mixed-culture sequencing batch photobioreactor. We developed an empirical mathematical model that suggests higher PPB growth rates as response to higher irradiance. Moreover, PPB adapted to light intensity by modulating the abundances of their phototrophic complexes. The obtained results provide an in-depth phylogenetic and metabolic insight the impact of irradiance on PPB. Our findings deliver the fundamental information for guiding the design of light-driven, anaerobic mixed-culture PPB processes for wastewater treatment and bioproduct valorization.
Collapse
|
30
|
Tomás-Martínez S, Chen LM, Neu TR, Weissbrodt DG, van Loosdrecht MCM, Lin Y. Catabolism of sialic acids in an environmental microbial community. FEMS Microbiol Ecol 2022; 98:6571932. [PMID: 35446356 DOI: 10.1093/femsec/fiac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Sialic acids are a family of nine-carbon negatively charged carbohydrates. In animals, they are abundant on mucosa surfaces as terminal carbohydrates of mucin glycoproteins. Some commensal and pathogenic bacteria are able to release, take up, and catabolize sialic acids. Recently, sialic acids have been discovered to be widespread among most microorganisms. Although the catabolism of sialic acids has been intensively investigated in the field of host-microbe interactions, very limited information is available on microbial degradation of sialic acids produced by environmental microorganisms. In this study, the catabolic pathways of sialic acids within an microbial community dominated by 'Candidatus Accumulibacter' was evaluated. Protein alignment tools were used to detect the presence of the different proteins involved in the utilization of sialic acids in the flanking populations detected by 16S rRNA gene amplicon sequencing. The results showed the ability of Clostridium to release sialic acids from the glycan chains by the action of a sialidase. Clostridium and Chryseobacterium can take up free sialic acids and utilize them as nutrient. Interestingly, these results display similarities with the catabolism of sialic acids by the gut microbiota. This study points at the importance of sialic acids in environmental communities in the absence of eukaryotic hosts.
Collapse
Affiliation(s)
- Sergio Tomás-Martínez
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Le Min Chen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Thomas R Neu
- Microbiology of Interfaces, Department River Ecology, Helmholtz Centre of Environmental Research - UFZ, Brueckstrasse 3A, 39114, Magdeburg, Germany
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
31
|
A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications. J Proteomics 2022; 261:104576. [DOI: 10.1016/j.jprot.2022.104576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
|
32
|
Pabst M, Grouzdev DS, Lawson CE, Kleikamp HBC, de Ram C, Louwen R, Lin YM, Lücker S, van Loosdrecht MCM, Laureni M. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. THE ISME JOURNAL 2022; 16:346-357. [PMID: 34341504 PMCID: PMC8776859 DOI: 10.1038/s41396-021-01073-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism-the anaerobic oxidation of ammonium-which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.
Collapse
Affiliation(s)
- Martin Pabst
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | | | - Christopher E. Lawson
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA
| | - Hugo B. C. Kleikamp
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Carol de Ram
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Rogier Louwen
- grid.5645.2000000040459992XDepartment of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yue Mei Lin
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Mark C. M. van Loosdrecht
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Michele Laureni
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| |
Collapse
|
33
|
Simopoulos CMA, Figeys D, Lavallée-Adam M. Novel Bioinformatics Strategies Driving Dynamic Metaproteomic Studies. Methods Mol Biol 2022; 2456:319-338. [PMID: 35612752 DOI: 10.1007/978-1-0716-2124-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Constant improvements in mass spectrometry technologies and laboratory workflows have enabled the proteomics investigation of biological samples of growing complexity. Microbiomes represent such complex samples for which metaproteomics analyses are becoming increasingly popular. Metaproteomics experimental procedures create large amounts of data from which biologically relevant signal must be efficiently extracted to draw meaningful conclusions. Such a data processing requires appropriate bioinformatics tools specifically developed for, or capable of handling metaproteomics data. In this chapter, we outline current and novel tools that can perform the most commonly used steps in the analysis of cutting-edge metaproteomics data, such as peptide and protein identification and quantification, as well as data normalization, imputation, mining, and visualization. We also provide details about the experimental setups in which these tools should be used.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
34
|
Blakeley-Ruiz JA, Kleiner M. Considerations for Constructing a Protein Sequence Database for Metaproteomics. Comput Struct Biotechnol J 2022; 20:937-952. [PMID: 35242286 PMCID: PMC8861567 DOI: 10.1016/j.csbj.2022.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Mass spectrometry-based metaproteomics has emerged as a prominent technique for interrogating the functions of specific organisms in microbial communities, in addition to total community function. Identifying proteins by mass spectrometry requires matching mass spectra of fragmented peptide ions to a database of protein sequences corresponding to the proteins in the sample. This sequence database determines which protein sequences can be identified from the measurement, and as such the taxonomic and functional information that can be inferred from a metaproteomics measurement. Thus, the construction of the protein sequence database directly impacts the outcome of any metaproteomics study. Several factors, such as source of sequence information and database curation, need to be considered during database construction to maximize accurate protein identifications traceable to the species of origin. In this review, we provide an overview of existing strategies for database construction and the relevant studies that have sought to test and validate these strategies. Based on this review of the literature and our experience we provide a decision tree and best practices for choosing and implementing database construction strategies.
Collapse
Affiliation(s)
- J. Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Corresponding authors at: Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Corresponding authors at: Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|