1
|
Jing SY, Wang HQ, Lin P, Yuan J, Tang ZX, Li H. Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments. NPJ Precis Oncol 2025; 9:68. [PMID: 40069556 PMCID: PMC11897387 DOI: 10.1038/s41698-025-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
The tumor microenvironment (TME) plays a crucial role in orchestrating tumor cell behavior and cancer progression. Recent advances in spatial profiling technologies have uncovered novel spatial signatures, including univariate distribution patterns, bivariate spatial relationships, and higher-order structures. These signatures have the potential to revolutionize tumor mechanism and treatment. In this review, we summarize the current state of spatial signature research, highlighting computational methods to uncover spatially relevant biological significance. We discuss the impact of these advances on fundamental cancer biology and translational research, address current challenges and future research directions.
Collapse
Affiliation(s)
- Si-Yu Jing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - He-Qi Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Ping Lin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jiao Yuan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhi-Xuan Tang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Yan G, Hua SH, Li JJ. Categorization of 34 computational methods to detect spatially variable genes from spatially resolved transcriptomics data. Nat Commun 2025; 16:1141. [PMID: 39880807 PMCID: PMC11779979 DOI: 10.1038/s41467-025-56080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
In the analysis of spatially resolved transcriptomics data, detecting spatially variable genes (SVGs) is crucial. Numerous computational methods exist, but varying SVG definitions and methodologies lead to incomparable results. We review 34 state-of-the-art methods, classifying SVGs into three categories: overall, cell-type-specific, and spatial-domain-marker SVGs. Our review explains the intuitions underlying these methods, summarizes their applications, and categorizes the hypothesis tests they use in the trade-off between generality and specificity for SVG detection. We discuss challenges in SVG detection and propose future directions for improvement. Our review offers insights for method developers and users, advocating for category-specific benchmarking.
Collapse
Affiliation(s)
- Guanao Yan
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095-1554, USA
| | - Shuo Harper Hua
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095-1554, USA.
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA.
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095-1766, USA.
- Department of Biostatistics, University of California, Los Angeles, CA, 90095-1772, USA.
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
4
|
Das Adhikari S, Yang J, Wang J, Cui Y. Recent advances in spatially variable gene detection in spatial transcriptomics. Comput Struct Biotechnol J 2024; 23:883-891. [PMID: 38370977 PMCID: PMC10869304 DOI: 10.1016/j.csbj.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
With the emergence of advanced spatial transcriptomic technologies, there has been a surge in research papers dedicated to analyzing spatial transcriptomics data, resulting in significant contributions to our understanding of biology. The initial stage of downstream analysis of spatial transcriptomic data has centered on identifying spatially variable genes (SVGs) or genes expressed with specific spatial patterns across the tissue. SVG detection is an important task since many downstream analyses depend on these selected SVGs. Over the past few years, a plethora of new methods have been proposed for the detection of SVGs, accompanied by numerous innovative concepts and discussions. This article provides a selective review of methods and their practical implementations, offering valuable insights into the current literature in this field.
Collapse
Affiliation(s)
- Sikta Das Adhikari
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Jiaxin Yang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Schmidt M, Avagyan S, Reiche K, Binder H, Loeffler-Wirth H. A Spatial Transcriptomics Browser for Discovering Gene Expression Landscapes across Microscopic Tissue Sections. Curr Issues Mol Biol 2024; 46:4701-4720. [PMID: 38785552 PMCID: PMC11119626 DOI: 10.3390/cimb46050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Susanna Avagyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| |
Collapse
|
6
|
Guo X, Ning J, Chen Y, Liu G, Zhao L, Fan Y, Sun S. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Brief Funct Genomics 2024; 23:95-109. [PMID: 37022699 DOI: 10.1093/bfgp/elad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.
Collapse
Affiliation(s)
- Xiya Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Ning
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanze Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guoliang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liyan Zhao
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Fan
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiquan Sun
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Li R, Chen X, Yang X. Navigating the landscapes of spatial transcriptomics: How computational methods guide the way. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1839. [PMID: 38527900 DOI: 10.1002/wrna.1839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Spatially resolved transcriptomics has been dramatically transforming biological and medical research in various fields. It enables transcriptome profiling at single-cell, multi-cellular, or sub-cellular resolution, while retaining the information of geometric localizations of cells in complex tissues. The coupling of cell spatial information and its molecular characteristics generates a novel multi-modal high-throughput data source, which poses new challenges for the development of analytical methods for data-mining. Spatial transcriptomic data are often highly complex, noisy, and biased, presenting a series of difficulties, many unresolved, for data analysis and generation of biological insights. In addition, to keep pace with the ever-evolving spatial transcriptomic experimental technologies, the existing analytical theories and tools need to be updated and reformed accordingly. In this review, we provide an overview and discussion of the current computational approaches for mining of spatial transcriptomics data. Future directions and perspectives of methodology design are proposed to stimulate further discussions and advances in new analytical models and algorithms. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Evolution and Genomics > Computational Analyses of RNA RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Runze Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Liu T, Fang Z, Li X, Zhang L, Cao DS, Li M, Yin M. Assembling spatial clustering framework for heterogeneous spatial transcriptomics data with GRAPHDeep. Bioinformatics 2024; 40:btae023. [PMID: 38243703 PMCID: PMC10832355 DOI: 10.1093/bioinformatics/btae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024] Open
Abstract
MOTIVATION Spatial clustering is essential and challenging for spatial transcriptomics' data analysis to unravel tissue microenvironment and biological function. Graph neural networks are promising to address gene expression profiles and spatial location information in spatial transcriptomics to generate latent representations. However, choosing an appropriate graph deep learning module and graph neural network necessitates further exploration and investigation. RESULTS In this article, we present GRAPHDeep to assemble a spatial clustering framework for heterogeneous spatial transcriptomics data. Through integrating 2 graph deep learning modules and 20 graph neural networks, the most appropriate combination is decided for each dataset. The constructed spatial clustering method is compared with state-of-the-art algorithms to demonstrate its effectiveness and superiority. The significant new findings include: (i) the number of genes or proteins of spatial omics data is quite crucial in spatial clustering algorithms; (ii) the variational graph autoencoder is more suitable for spatial clustering tasks than deep graph infomax module; (iii) UniMP, SAGE, SuperGAT, GATv2, GCN, and TAG are the recommended graph neural networks for spatial clustering tasks; and (iv) the used graph neural network in the existent spatial clustering frameworks is not the best candidate. This study could be regarded as desirable guidance for choosing an appropriate graph neural network for spatial clustering. AVAILABILITY AND IMPLEMENTATION The source code of GRAPHDeep is available at https://github.com/narutoten520/GRAPHDeep. The studied spatial omics data are available at https://zenodo.org/record/8141084.
Collapse
Affiliation(s)
- Teng Liu
- Department of Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
- Department of Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, 400044, China
| | - Zhaoyu Fang
- Department of Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, 410083, China
| | - Xin Li
- Department of Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
- Department of Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, 400044, China
| | - Lining Zhang
- Department of Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
- Department of Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, 400044, China
| | - Dong-Sheng Cao
- Department of Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, P.R. China
| | - Min Li
- Department of Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, 410083, China
| | - Mingzhu Yin
- Department of Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
- Department of Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, 400044, China
| |
Collapse
|
9
|
Koshy AM, Mendoza-Parra MA. Retinoids: Mechanisms of Action in Neuronal Cell Fate Acquisition. Life (Basel) 2023; 13:2279. [PMID: 38137880 PMCID: PMC10744663 DOI: 10.3390/life13122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Neuronal differentiation has been shown to be directed by retinoid action during embryo development and has been exploited in various in vitro cell differentiation systems. In this review, we summarize the role of retinoids through the activation of their specific retinoic acid nuclear receptors during embryo development and also in a variety of in vitro strategies for neuronal differentiation, including recent efforts in driving cell specialization towards a range of neuronal subtypes and glial cells. Finally, we highlight the role of retinoic acid in recent protocols recapitulating nervous tissue complexity (cerebral organoids). Overall, we expect that this effort might pave the way for exploring the usage of specific synthetic retinoids for directing complex nervous tissue differentiation.
Collapse
Affiliation(s)
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d’Essonne, University Paris-Saclay, 91057 Évry, France;
| |
Collapse
|
10
|
Walker BL, Nie Q. NeST: nested hierarchical structure identification in spatial transcriptomic data. Nat Commun 2023; 14:6554. [PMID: 37848426 PMCID: PMC10582109 DOI: 10.1038/s41467-023-42343-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Spatial gene expression in tissue is characterized by regions in which particular genes are enriched or depleted. Frequently, these regions contain nested inside them subregions with distinct expression patterns. Segmentation methods in spatial transcriptomic (ST) data extract disjoint regions maximizing similarity over the greatest number of genes, typically on a particular spatial scale, thus lacking the ability to find region-within-region structure. We present NeST, which extracts spatial structure through coexpression hotspots-regions exhibiting localized spatial coexpression of some set of genes. Coexpression hotspots identify structure on any spatial scale, over any possible subset of genes, and are highly explainable. NeST also performs spatial analysis of cell-cell interactions via ligand-receptor, identifying active areas de novo without restriction of cell type or other groupings, in both two and three dimensions. Through application on ST datasets of varying type and resolution, we demonstrate the ability of NeST to reveal a new level of biological structure.
Collapse
Affiliation(s)
- Benjamin L Walker
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, 92627, USA
- Department of Mathematics, University of California Irvine, Irvine, CA, 92627, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, 92627, USA.
- Department of Mathematics, University of California Irvine, Irvine, CA, 92627, USA.
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92627, USA.
| |
Collapse
|
11
|
Yuan Z, Yao J. Harnessing computational spatial omics to explore the spatial biology intricacies. Semin Cancer Biol 2023; 95:25-41. [PMID: 37400044 DOI: 10.1016/j.semcancer.2023.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Spatially resolved transcriptomics (SRT) has unlocked new dimensions in our understanding of intricate tissue architectures. However, this rapidly expanding field produces a wealth of diverse and voluminous data, necessitating the evolution of sophisticated computational strategies to unravel inherent patterns. Two distinct methodologies, gene spatial pattern recognition (GSPR) and tissue spatial pattern recognition (TSPR), have emerged as vital tools in this process. GSPR methodologies are designed to identify and classify genes exhibiting noteworthy spatial patterns, while TSPR strategies aim to understand intercellular interactions and recognize tissue domains with molecular and spatial coherence. In this review, we provide a comprehensive exploration of SRT, highlighting crucial data modalities and resources that are instrumental for the development of methods and biological insights. We address the complexities and challenges posed by the use of heterogeneous data in developing GSPR and TSPR methodologies and propose an optimal workflow for both. We delve into the latest advancements in GSPR and TSPR, examining their interrelationships. Lastly, we peer into the future, envisaging the potential directions and perspectives in this dynamic field.
Collapse
Affiliation(s)
- Zhiyuan Yuan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | | |
Collapse
|
12
|
Wang WJ, Chu LX, He LY, Zhang MJ, Dang KT, Gao C, Ge QY, Wang ZG, Zhao XW. Spatial transcriptomics: recent developments and insights in respiratory research. Mil Med Res 2023; 10:38. [PMID: 37592342 PMCID: PMC10433685 DOI: 10.1186/s40779-023-00471-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field. Although bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) have provided insights into cell types and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, the current challenges and potential development directions are proposed, including high-throughput full-length transcriptome, integration of multi-omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints are expected to advance the study of systematic mechanisms, including respiratory studies.
Collapse
Affiliation(s)
- Wen-Jia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu-Xi Chu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li-Yong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ming-Jing Zhang
- Orthopaedic Bioengineering Research Group, Division of Surgery and Interventional Science, University College London, London, HA7 4LP, UK
| | - Kai-Tong Dang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qin-Yu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhou-Guang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiang-Wei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
13
|
Liu CC, Greenwald NF, Kong A, McCaffrey EF, Leow KX, Mrdjen D, Cannon BJ, Rumberger JL, Varra SR, Angelo M. Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering. Nat Commun 2023; 14:4618. [PMID: 37528072 PMCID: PMC10393943 DOI: 10.1038/s41467-023-40068-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
While technologies for multiplexed imaging have provided an unprecedented understanding of tissue composition in health and disease, interpreting this data remains a significant computational challenge. To understand the spatial organization of tissue and how it relates to disease processes, imaging studies typically focus on cell-level phenotypes. However, images can capture biologically important objects that are outside of cells, such as the extracellular matrix. Here, we describe a pipeline, Pixie, that achieves robust and quantitative annotation of pixel-level features using unsupervised clustering and show its application across a variety of biological contexts and multiplexed imaging platforms. Furthermore, current cell phenotyping strategies that rely on unsupervised clustering can be labor intensive and require large amounts of manual cluster adjustments. We demonstrate how pixel clusters that lie within cells can be used to improve cell annotations. We comprehensively evaluate pre-processing steps and parameter choices to optimize clustering performance and quantify the reproducibility of our method. Importantly, Pixie is open source and easily customizable through a user-friendly interface.
Collapse
Affiliation(s)
- Candace C Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Alex Kong
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Ke Xuan Leow
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dunja Mrdjen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bryan J Cannon
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Josef Lorenz Rumberger
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Charité University Medicine, Berlin, Germany
| | | | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Du J, Yang YC, An ZJ, Zhang MH, Fu XH, Huang ZF, Yuan Y, Hou J. Advances in spatial transcriptomics and related data analysis strategies. J Transl Med 2023; 21:330. [PMID: 37202762 PMCID: PMC10193345 DOI: 10.1186/s12967-023-04150-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Spatial transcriptomics technologies developed in recent years can provide various information including tissue heterogeneity, which is fundamental in biological and medical research, and have been making significant breakthroughs. Single-cell RNA sequencing (scRNA-seq) cannot provide spatial information, while spatial transcriptomics technologies allow gene expression information to be obtained from intact tissue sections in the original physiological context at a spatial resolution. Various biological insights can be generated into tissue architecture and further the elucidation of the interaction between cells and the microenvironment. Thus, we can gain a general understanding of histogenesis processes and disease pathogenesis, etc. Furthermore, in silico methods involving the widely distributed R and Python packages for data analysis play essential roles in deriving indispensable bioinformation and eliminating technological limitations. In this review, we summarize available technologies of spatial transcriptomics, probe into several applications, discuss the computational strategies and raise future perspectives, highlighting the developmental potential.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| | - Yu-Chen Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Zhi-Jie An
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ming-Hui Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Xue-Hang Fu
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| | - Zou-Fang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 Jiangxi China
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240 China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240 China
| | - Jian Hou
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| |
Collapse
|
15
|
Yue L, Liu F, Hu J, Yang P, Wang Y, Dong J, Shu W, Huang X, Wang S. A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. Comput Struct Biotechnol J 2023; 21:940-955. [PMID: 38213887 PMCID: PMC10781722 DOI: 10.1016/j.csbj.2023.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Advances in transcriptomic technologies have deepened our understanding of the cellular gene expression programs of multicellular organisms and provided a theoretical basis for disease diagnosis and therapy. However, both bulk and single-cell RNA sequencing approaches lose the spatial context of cells within the tissue microenvironment, and the development of spatial transcriptomics has made overall bias-free access to both transcriptional information and spatial information possible. Here, we elaborate development of spatial transcriptomic technologies to help researchers select the best-suited technology for their goals and integrate the vast amounts of data to facilitate data accessibility and availability. Then, we marshal various computational approaches to analyze spatial transcriptomic data for various purposes and describe the spatial multimodal omics and its potential for application in tumor tissue. Finally, we provide a detailed discussion and outlook of the spatial transcriptomic technologies, data resources and analysis approaches to guide current and future research on spatial transcriptomics.
Collapse
Affiliation(s)
- Liangchen Yue
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Feng Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Jiongsong Hu
- University of South China, Hengyang, Hunan 421001, China
| | - Pin Yang
- Anhui Medical University, Hefei 230022, Anhui, China
| | - Yuxiang Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Junguo Dong
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Wenjie Shu
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Xingxu Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| |
Collapse
|
16
|
Duan H, Cheng T, Cheng H. Spatially resolved transcriptomics: advances and applications. BLOOD SCIENCE 2023; 5:1-14. [PMID: 36742187 PMCID: PMC9891446 DOI: 10.1097/bs9.0000000000000141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Spatial transcriptomics, which is capable of both measuring all gene activity in a tissue sample and mapping where this activity occurs, is vastly improving our understanding of biological processes and disease. The field has expanded rapidly in recent years, and the development of several new technologies has resulted in spatially resolved transcriptomics (SRT) becoming highly multiplexed, high-resolution, and high-throughput. Here, we summarize and compare the major methods of SRT, including imaging-based methods, sequencing-based methods, and in situ sequencing methods. We also highlight some typical applications of SRT in neuroscience, cancer biology, developmental biology, and hematology. Finally, we discuss future possibilities for improving spatially resolved transcriptomic methods and the expected applications of such methods, especially in the adult bone marrow, anticipating that new developments will unlock the full potential of spatially resolved multi-omics in both biological research and the clinic.
Collapse
Affiliation(s)
- Honglin Duan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
17
|
Ren H, Walker BL, Cang Z, Nie Q. Identifying multicellular spatiotemporal organization of cells with SpaceFlow. Nat Commun 2022; 13:4076. [PMID: 35835774 PMCID: PMC9283532 DOI: 10.1038/s41467-022-31739-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
One major challenge in analyzing spatial transcriptomic datasets is to simultaneously incorporate the cell transcriptome similarity and their spatial locations. Here, we introduce SpaceFlow, which generates spatially-consistent low-dimensional embeddings by incorporating both expression similarity and spatial information using spatially regularized deep graph networks. Based on the embedding, we introduce a pseudo-Spatiotemporal Map that integrates the pseudotime concept with spatial locations of the cells to unravel spatiotemporal patterns of cells. By comparing with multiple existing methods on several spatial transcriptomic datasets at both spot and single-cell resolutions, SpaceFlow is shown to produce a robust domain segmentation and identify biologically meaningful spatiotemporal patterns. Applications of SpaceFlow reveal evolving lineage in heart developmental data and tumor-immune interactions in human breast cancer data. Our study provides a flexible deep learning framework to incorporate spatiotemporal information in analyzing spatial transcriptomic data.
Collapse
Affiliation(s)
- Honglei Ren
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, 92627, USA
| | - Benjamin L Walker
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, 92627, USA
- Department of Mathematics, University of California Irvine, Irvine, CA, 92627, USA
| | - Zixuan Cang
- Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, 92627, USA.
- Department of Mathematics, University of California Irvine, Irvine, CA, 92627, USA.
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92627, USA.
| |
Collapse
|
18
|
Zeng Z, Li Y, Li Y, Luo Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol 2022; 23:83. [PMID: 35337374 PMCID: PMC8951701 DOI: 10.1186/s13059-022-02653-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/15/2022] [Indexed: 01/28/2023] Open
Abstract
The recent advancement in spatial transcriptomics technology has enabled multiplexed profiling of cellular transcriptomes and spatial locations. As the capacity and efficiency of the experimental technologies continue to improve, there is an emerging need for the development of analytical approaches. Furthermore, with the continuous evolution of sequencing protocols, the underlying assumptions of current analytical methods need to be re-evaluated and adjusted to harness the increasing data complexity. To motivate and aid future model development, we herein review the recent development of statistical and machine learning methods in spatial transcriptomics, summarize useful resources, and highlight the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100084, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100084, China
- Department of Data Sciences, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Yawei Li
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yiming Li
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Northwestern University Clinical and Translational Sciences Institute, Chicago, IL, 60611, USA.
- Institute for Augmented Intelligence in Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Center for Health Information Partnerships, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Moehlin J, Koshy A, Stüder F, Mendoza-Parra MA. Protocol for using MULTILAYER to reveal molecular tissue substructures from digitized spatial transcriptomes. STAR Protoc 2021; 2:100823. [PMID: 34585159 PMCID: PMC8450297 DOI: 10.1016/j.xpro.2021.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spatially resolved transcriptomics (SrT) allow researchers to explore organ/tissue architecture from the angle of the gene programs involved in their molecular complexity. Here, we describe the use of MULTILAYER to reveal molecular tissue substructures from the analysis of localized transcriptomes (defined as gexels). MULTILAYER can process low- and high-resolution SrT data but also perform comparative analyses within multiple SrT readouts. For complete details on the use and execution of this protocol, please refer to Moehlin et al., 2021. MULTILAYER reveals spatial transcriptomes (ST) into biologically relevant substructures MULTILAYER provides a user-friendly environment for ST processing MULTILAYER has been used on a variety of data, including high-resolution ST A “Visium data convertor” and a “high-resolution data compressor” are also available
Collapse
Affiliation(s)
- Julien Moehlin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, University Paris-Saclay, 91057 Évry, France
| | - Aysis Koshy
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, University Paris-Saclay, 91057 Évry, France
| | - François Stüder
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, University Paris-Saclay, 91057 Évry, France
| | - Marco Antonio Mendoza-Parra
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, University Paris-Saclay, 91057 Évry, France
| |
Collapse
|