1
|
Montero-Hidalgo AJ, Jiménez-Vacas JM, Gómez-Gómez E, Porcel-Pastrana F, Sáez-Martínez P, Pérez-Gómez JM, Fuentes-Fayos AC, Blázquez-Encinas R, Sánchez-Sánchez R, González-Serrano T, Castro E, López-Soto PJ, Carrasco-Valiente J, Sarmento-Cabral A, Martinez-Fuentes AJ, Eyras E, Castaño JP, Sharp A, Olmos D, Gahete MD, Luque RM. SRSF6 modulates histone-chaperone HIRA splicing to orchestrate AR and E2F activity in prostate cancer. SCIENCE ADVANCES 2024; 10:eado8231. [PMID: 39356765 PMCID: PMC11446284 DOI: 10.1126/sciadv.ado8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Despite novel therapeutic strategies, advanced-stage prostate cancer (PCa) remains highly lethal, pointing out the urgent need for effective therapeutic strategies. While dysregulation of the splicing process is considered a cancer hallmark, the role of certain splicing factors remains unknown in PCa. This study focuses on characterizing the levels and role of SRSF6 in this disease. Comprehensive analyses of SRSF6 alterations (copy number/mRNA/protein) were conducted across eight well-characterized PCa cohorts and the Hi-MYC transgenic model. SRSF6 was up-regulated in PCa samples, correlating with adverse clinical parameters. Functional assays, both in vitro (cell proliferation, migration, colony, and tumorsphere formation) and in vivo (xenograft tumors), demonstrated the impact of SRSF6 modulation on critical cancer hallmarks. Mechanistically, SRSF6 regulates the splicing pattern of the histone-chaperone HIRA, consequently affecting the activity of H3.3 in PCa and breast cancer cell models and disrupting pivotal oncogenic pathways (AR and E2F) in PCa cells. These findings underscore SRSF6 as a promising therapeutic target for PCa/advanced-stage PCa.
Collapse
Affiliation(s)
- Antonio J. Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
- Institute of Cancer Research, London, UK
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Francisco Porcel-Pastrana
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Jesús M. Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C. Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Biomedical Research Institute of Málaga, Málaga, Spain
| | - Pablo J. López-Soto
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Department of Nursing, Pharmacology, and Physiotherapy, University of Cordoba, Córdoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J. Martinez-Fuentes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Adam Sharp
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| |
Collapse
|
2
|
Klapp V, Gumustekin O, Paggetti J, Moussay E, Largeot A. Assessment of translation rate in leukemic cells and immune cells of the microenvironment by OPP protein synthesis assay. Methods Cell Biol 2024; 189:1-21. [PMID: 39393878 DOI: 10.1016/bs.mcb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Despite being tightly regulated, messenger RNA (mRNA) translation, a manner in which cells control expression of genes and rapidly respond to stimuli, is highly dysfunctional and plastic in pathologies including cancer. Conversely, the investigation of molecular mechanisms whereby mRNA translation becomes aberrant in cancer, as well as inhibition thereof, become critical in developing novel therapeutic approaches. More specifically, in malignancies such as chronic lymphocytic leukemia in which aberrant global and transcript specific translation has been linked with poorer patient outcomes, targeting translation is a relevant approach, with various translation inhibitors under development. Here we elaborate on a protein synthesis assay by flow cytometry, O-propargyl-puromycin, demonstrating global mRNA translation rate with a variety of different applications including cell lines, primary cells or co-culture systems in vitro. This method provides a comprehensive tool in quantifying the rate of global mRNA translation in cancer cells, as well as that of the tumor microenvironment cells, or in response to inhibitory therapeutic agents while offering the possibility to simultaneously assess other cellular markers.
Collapse
Affiliation(s)
- Vanessa Klapp
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ozgu Gumustekin
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jerome Paggetti
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anne Largeot
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
3
|
Levy T, Voeltzke K, Hruby L, Alasad K, Bas Z, Snaebjörnsson M, Marciano R, Scharov K, Planque M, Vriens K, Christen S, Funk CM, Hassiepen C, Kahler A, Heider B, Picard D, Lim JKM, Stefanski A, Bendrin K, Vargas-Toscano A, Kahlert UD, Stühler K, Remke M, Elkabets M, Grünewald TGP, Reichert AS, Fendt SM, Schulze A, Reifenberger G, Rotblat B, Leprivier G. mTORC1 regulates cell survival under glucose starvation through 4EBP1/2-mediated translational reprogramming of fatty acid metabolism. Nat Commun 2024; 15:4083. [PMID: 38744825 PMCID: PMC11094136 DOI: 10.1038/s41467-024-48386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.
Collapse
Affiliation(s)
- Tal Levy
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Kai Voeltzke
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Laura Hruby
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Khawla Alasad
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Zuelal Bas
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Marteinn Snaebjörnsson
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, 97074, Würzburg, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ran Marciano
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Katerina Scharov
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Kim Vriens
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Stefan Christen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Cornelius M Funk
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
| | - Christina Hassiepen
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Alisa Kahler
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Beate Heider
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Daniel Picard
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- German cancer consortium (DKTK) partner site Essen/Düsseldorf, 40225, Düsseldorf, Germany
| | - Jonathan K M Lim
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Katja Bendrin
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Andres Vargas-Toscano
- Clinic for Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353, Berlin, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral, Vascular- and Transplantation Surgery, Faculty of Medicine and University Medicine, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Marc Remke
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- German cancer consortium (DKTK) partner site Essen/Düsseldorf, 40225, Düsseldorf, Germany
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Almut Schulze
- Biochemistry and Molecular Biology, Theodor-Boveri-Institute, 97074, Würzburg, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- German cancer consortium (DKTK) partner site Essen/Düsseldorf, 40225, Düsseldorf, Germany
| | - Barak Rotblat
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Gabriel Leprivier
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Wu S, Wagner G. Computational inference of eIF4F complex function and structure in human cancers. Proc Natl Acad Sci U S A 2024; 121:e2313589121. [PMID: 38266053 PMCID: PMC10835048 DOI: 10.1073/pnas.2313589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent translation initiation in eukaryotic cells. An alternative cap-independent initiation can occur, involving only eIF4G1 and eIF4A1 through internal ribosome entry sites (IRESs). This mechanism is considered complementary to cap-dependent initiation, particularly in tumors under stress conditions. However, the selection and molecular mechanism of specific translation initiation remains poorly understood in human cancers. Thus, we analyzed gene copy number variations (CNVs) in TCGA tumor samples and found frequent amplification of genes involved in translation initiation. Copy number gains in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 expression strongly correlates with genes from cancer cell survival pathways including cell cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquitination, and ESCRT proteins. Utilizing Alphafold predictions, we modeled the eIF4F structure with and without eIF4E binding. For cap-dependent initiation, our modeling reveals extensive interactions between the N-terminal eIF4E-binding domain of eIF4G1 and eIF4E. Furthermore, the eIF4G1 HEAT-2 domain positions eIF4E near the eIF4A1 N-terminal domain (NTD), resulting in the collaborative enclosure of the RNA binding cavity within eIF4A1. In contrast, during cap-independent initiation, the HEAT-2 domain directly binds the eIF4A1-NTD, leading to a stronger interaction between eIF4G1 and eIF4A1, thus closing the mRNA binding cavity without the involvement of eIF4E.
Collapse
Affiliation(s)
- Su Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Wu S, Wagner G. Computational inference of eIF4F complex function and structure in human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552450. [PMID: 37609226 PMCID: PMC10441403 DOI: 10.1101/2023.08.10.552450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent translation initiation in eukaryotic cells (1). However, cap-independent initiation can occur through internal ribosomal entry sites (IRESs), involving only eIF4G1 and eIF4A1 present, which is considered to be a complementary process to cap-dependent initiation in tumors under stress conditions (2). The selection and molecular mechanism of specific translation initiation in human cancers remains poorly understood. Thus, we analyzed gene copy number variations (CNVs) in TCGA tumor samples and found frequent amplification of genes involved in translation initiation. Copy number gains in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 expression strongly correlates with genes from cancer cell survival pathways including cell cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquitination, and ESCRT proteins. Using Alphafold predictions, we modeled the eIF4F structure with and without eIF4G1-eIF4E binding. The modeling for cap-dependent initiation suggests that eIF4G1 interacts with eIF4E through its N-terminal eIF4E-binding domain, bringing eIF4E near the eIF4A1 mRNA binding cavity and closing the cavity with both eIF4G1 HEAT-2 domain and eIF4E. In the cap-independent mechanism, α-helix 5 of eIF4G1 HEAT-2 domain instead directly interacts with the eIF4A1 N-terminal domain to close the mRNA binding cavity without eIF4E involvement, resulting in a stronger interaction between eIF4G1 and eIF4A1. Significance Statement Translation initiation is primarily governed by eIF4F, employing a "cap-dependent" mechanism, but eIF4F dysregulation may lead to a "cap-independent" mechanism in stressed cancer cells. We found frequent amplification of translation initiation genes, and co-occurring copy number gains of EIF4G1 and EIF3E genes in human cancers. EIF4G1 amplification or duplication may be positively selected for its beneficial impact on the overexpression of cancer survival genes. The co-regulation of eIF4G1 and eIF4A1, distinctly from eIF4E, reveals eIF4F dysregulation favoring cap-independent initiation. Alphafold predicts changes in the eIF4F complex assembly to accommodate both initiation mechanisms. These findings have significant implications for evaluating cancer cell vulnerability to eIF4F inhibition and developing treatments that target cancer cells with dependency on the translation initiation mechanism.
Collapse
|
6
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|
7
|
Wu S, Wagner G. Protocol to analyze dysregulation of the eIF4F complex in human cancers using R software and large public datasets. STAR Protoc 2022; 3:101880. [PMID: 36595939 PMCID: PMC9768376 DOI: 10.1016/j.xpro.2022.101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding dysregulation of the eukaryotic initiation factor 4F (eIF4F) complex across tumor types is critical to cancer treatment development. We present a protocol and accompanying R package "eIF4F.analysis". We describe analysis of copy number status, gene abundance and stoichiometry, survival probability, expression covariation, correlating genes, mRNA/protein correlation, and protein co-expression. Using publicly available large multi-omics data, eIF4F.analysis permits computationally derived and statistically powerful inferences regarding initiation factor regulation in human cancers and clinical relevance of protein interactions within the eIF4F complex. For complete details on the use and execution of this protocol, please refer to Wu and Wagner (2021).1.
Collapse
Affiliation(s)
- Su Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA,Corresponding author
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA,Corresponding author
| |
Collapse
|
8
|
Li K, Tan G, Zhang X, Lu W, Ren J, Si Y, Adu-Gyamfi EA, Li F, Wang Y, Xie B, Wang M. EIF4G1 Is a Potential Prognostic Biomarker of Breast Cancer. Biomolecules 2022; 12:biom12121756. [PMID: 36551184 PMCID: PMC9776011 DOI: 10.3390/biom12121756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Breast cancer (BRCA) is one of the most common cancers in women worldwide and a leading cause of death from malignancy. This study was designed to identify a novel biomarker for prognosticating the survival of BRCA patients. METHODS The prognostic potential of eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) was assessed using RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) as training cohort and validation set, respectively. The functional enrichment analysis of differentially expressed genes (DEGs) was performed. The relationship between EIF4G1 and tumor microenvironment (TME) was analyzed. Immunotherapy responses were explored by the immunophenoscores (IPS) and tumor immune dysfunction and exclusion (TIDE) score. The Connectivity Map (CMap) was used to discover potentially effective therapeutic molecules against BRCA. Immunohistochemistry (IHC) was applied to compare the protein levels of EIF4G1 in normal and cancer tissues and to verify the prognostic value of EIF4G1. RESULTS BRCA patients with increased expression of EIF4G1 had a shorter overall survival (OS) in all cohorts and results from IHC. EIF4G1-related genes were mainly involved in DNA replication, BRCA metastasis, and the MAPK signaling pathway. Infiltration levels of CD4+-activated memory T cells, macrophages M0, macrophages M1, and neutrophils were higher in the EIF4G1 high-expression group than those in the EIF4G1 low-expression group. EIF4G1 was positively correlated with T cell exhaustion. Lower IPS was revealed in high EIF4G1 expression patients. Five potential groups of drugs against BRCA were identified. CONCLUSION EIF4G1 might regulate the TME and affect BRCA metastasis, and it is a potential prognostic biomarker and therapeutic target for BRCA.
Collapse
Affiliation(s)
- Kun Li
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guangqing Tan
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin Zhang
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiyu Lu
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jingyi Ren
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuewen Si
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Enoch Appiah Adu-Gyamfi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (B.X.); (M.W.)
| | - Meijiao Wang
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (B.X.); (M.W.)
| |
Collapse
|
9
|
He CM, Zhang XD, Zhu SX, Zheng JJ, Wang YM, Wang Q, Yin H, Fu YJ, Xue S, Tang J, Zhao XJ. Integrative pan-cancer analysis and clinical characterization of the N7-methylguanosine (m7G) RNA modification regulators in human cancers. Front Genet 2022; 13:998147. [PMID: 36226166 PMCID: PMC9549978 DOI: 10.3389/fgene.2022.998147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: RNA modification is one of the epigenetic mechanisms that regulates post-transcriptional gene expression, and abnormal RNA modifications have been reported to play important roles in tumorigenesis. N7-methylguanosine (m7G) is an essential modification at the 5′ cap of human mRNA. However, a systematic and pan-cancer analysis of the clinical relevance of m7G related regulatory genes is still lacking.Methods: We used univariate Cox model and Kaplan-Meier analysis to generate the forest plot of OS, PFI, DSS and identified the correlation between the altered expression of m7G regulators and patient survival in 33 cancer types from the TCGA and GTEx databases. Then, the “estimate” R-package, ssGSEA and CIBERSORT were used to depict the pan-cancer immune landscape. Through Spearman’s correlation test, we analyzed the correlation between m7G regulators and the tumor microenvironment (TME), immune subtype, and drug sensitivity of the tumors, which was further validated in NSCLC. We also assessed the changes in the expression of m7G related regulatory genes in NSCLC with regards to the genetic and transcriptional aspects and evaluated the correlation of METTL1 and WDR4 expression with TMB, MSI and immunotherapy in pan-cancer.Results: High expression of most of the m7G regulators was significantly associated with worse prognosis. Correlation analyses revealed that the expression of majority of the m7G regulators was correlated with tumor immune infiltration and tumor stem cell scores. Drug sensitivity analysis showed that the expression of CYFP1,2 was closely related to drug sensitivity for various anticancer agents (p < 0.001). Analysis of the pan-cancer immune subtype revealed significant differences in the expression of m7G regulators between different immune subtypes (p < 0.001). Additionally, the types and proportions of mutations in METTL1 and WDR4 and their relevance to immunotherapy were further described.Conclusion: Our study is the first to evaluate the correlation between the altered expression of m7G regulators and patient survival, the degree of immune infiltration, TME and drug sensitivity in pan-cancer datasets.
Collapse
Affiliation(s)
- Chun-Ming He
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin-Di Zhang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Song-Xin Zhu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia-Jie Zheng
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Ming Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hang Yin
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Jie Fu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Tang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jian Tang, ; Xiao-Jing Zhao,
| | - Xiao-Jing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jian Tang, ; Xiao-Jing Zhao,
| |
Collapse
|
10
|
Li Z, Wang W, Wu J, Ye X. Identification of N7-methylguanosine related signature for prognosis and immunotherapy efficacy prediction in lung adenocarcinoma. Front Med (Lausanne) 2022; 9:962972. [PMID: 36091687 PMCID: PMC9449120 DOI: 10.3389/fmed.2022.962972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLung adenocarcinoma (LUAD) is one of the most frequent causes of tumor-related mortality worldwide. Recently, the role of N7-methylguanosine (m7G) in tumors has begun to receive attention, but no investigation on the impact of m7G on LUAD. This study aims to elucidate the significance of m7G on the prognosis and immunotherapy in LUAD.MethodsConsensus clustering was employed to determine the molecular subtype according to m7G-related regulators extracted from The Cancer Genome Atlas (TCGA) database. Survival, clinicopathological features and tumor mutational burden (TMB) analysis were applied to research molecular characteristics of each subtype. Subsequently, “limma” package was used to screen differentially expressed genes (DEGs) between subtypes. In the TCGA train cohort (n = 245), a prognostic signature was established by univariate Cox regression, lasso regression and multivariate Cox regression analysis according to DEGs and survival analysis was employed to assess the prognosis. Then the prognostic value of the signature was verified by TCGA test cohort (n = 245), TCGA entire cohort (n = 490) and GSE31210 cohort (n = 226). Moreover, the association among immune infiltration, clinical features and the signature was investigated. The immune checkpoints, TMB and tumor immune dysfunction and exclusion (TIDE) were applied to predict the immunotherapy response.ResultsTwo novel molecular subtypes (C1 and C2) of LUAD were identified. Compared to C2 subtype, C1 subtype had poorer prognosis and higher TMB. Subsequently, the signature (called the “m7G score”) was constructed according to four key genes (E2F7, FAM83A, PITX3, and HOXA13). The distribution of m7G score were significantly different between two molecular subtypes. The patients with lower m7G score had better prognosis in TCGA train cohort and three verification cohort. The m7G score was intensively related to immune infiltration. Compared with the lower score, the higher m7G score was related to remarkable upregulation of the PD-1 and PD-L1, the higher TMB and the lower TIDE score.ConclusionThis study established a m7G-related signature for predicting prognosis and immunotherapy in LUAD, which may contribute to the development of new therapeutic strategies for LUAD.
Collapse
|