1
|
Petrova E, Kortunov E, Mayer KU, Grathwohl P, Finkel M. Travel time-based modelling of nitrate reduction in a fractured limestone aquifer by pyrite and iron carbonates under pore size limitation. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:103983. [PMID: 35306325 DOI: 10.1016/j.jconhyd.2022.103983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
We investigate denitrification in a ferric iron-containing fractured micritic limestone aquifer (Triassic Upper Muschelkalk) in south-west Germany by numerical simulations. Low porosity values (average value of 1%), partly small pore sizes of the rock matrix (~ 0.1 μm), and thus potential absence of microbial activity in the rock matrix suggest that denitrification is taking place solely in the fracture. A key question is whether the nitrate reduction derived from groundwater observations at 25 locations in the study area can be explained by a model that restricts microbial denitrification to the fractures. A travel time-based reactive transport model is developed to efficiently simulate long-term nitrate reduction on the catchment scale. The model employs a 2-D numerical reaction model describing the fracture-rock matrix system and parametric travel time distributions. The role of (i) biotic and abiotic iron oxidation, (ii) the type and amount of iron bearing minerals, and (iii) mass transfer between matrix and fracture are investigated. The simulations show that pyrite and siderite (used as surrogate for iron carbonates) together as a source of electron donors provide enough reduction potential to decrease the nitrate concentrations as observed in the field. This confirms the hypothesis that diffusion-controlled mass transfer of electron donors from the matrix to the fracture is sufficient to establish considerable denitrification in the fracture. Uncertainty in modelled concentrations is demonstrated as a result of both the geochemical aquifer properties and the unknown shape of travel time distributions.
Collapse
Affiliation(s)
- Elena Petrova
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.
| | - Evgenii Kortunov
- Faculty of Geology, Department of Hydrogeology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119899, Russia
| | - K Ulrich Mayer
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Peter Grathwohl
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Miсhael Finkel
- Center for Applied Geoscience, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Jew AD, Druhan JL, Ihme M, Kovscek AR, Battiato I, Kaszuba JP, Bargar JR, Brown GE. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales. Chem Rev 2022; 122:9198-9263. [PMID: 35404590 DOI: 10.1021/acs.chemrev.1c00504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydraulic fracturing of unconventional oil/gas shales has changed the energy landscape of the U.S. Recovery of hydrocarbons from tight, hydraulically fractured shales is a highly inefficient process, with estimated recoveries of <25% for natural gas and <5% for oil. This review focuses on the complex chemical interactions of additives in hydraulic fracturing fluid (HFF) with minerals and organic matter in oil/gas shales. These interactions are intended to increase hydrocarbon recovery by increasing porosities and permeabilities of tight shales. However, fluid-shale interactions result in the dissolution of shale minerals and the release and transport of chemical components. They also result in mineral precipitation in the shale matrix, which can reduce permeability, porosity, and hydrocarbon recovery. Competition between mineral dissolution and mineral precipitation processes influences the amounts of oil and gas recovered. We review the temporal/spatial origins and distribution of unconventional oil/gas shales from mudstones and shales, followed by discussion of their global and U.S. distributions and compositional differences from different U.S. sedimentary basins. We discuss the major types of chemical additives in HFF with their intended purposes, including drilling muds. Fracture distribution, porosity, permeability, and the identity and molecular-level speciation of minerals and organic matter in oil/gas shales throughout the hydraulic fracturing process are discussed. Also discussed are analysis methods used in characterizing oil/gas shales before and after hydraulic fracturing, including permeametry and porosimetry measurements, X-ray diffraction/Rietveld refinement, X-ray computed tomography, scanning/transmission electron microscopy, and laboratory- and synchrotron-based imaging/spectroscopic methods. Reactive transport and spatial scaling are discussed in some detail in order to relate fundamental molecular-scale processes to fluid transport. Our review concludes with a discussion of potential environmental impacts of hydraulic fracturing and important knowledge gaps that must be bridged to achieve improved mechanistic understanding of fluid transport in oil/gas shales.
Collapse
Affiliation(s)
- Adam D Jew
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jennifer L Druhan
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Departments of Geology and Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthias Ihme
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Anthony R Kovscek
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Energy Resources Engineering, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2220, United States
| | - Ilenia Battiato
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Energy Resources Engineering, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2220, United States
| | - John P Kaszuba
- Department of Geology and Geophysics and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John R Bargar
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Gordon E Brown
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.,Department of Geological Sciences, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2115, United States
| |
Collapse
|