1
|
Briesemeister M, Gómez-Sánchez JA, Bertemes-Filho P, Pezzin SH. PVC/CNT Electrospun Composites: Morphology and Thermal and Impedance Behavior. Polymers (Basel) 2024; 16:2867. [PMID: 39458694 PMCID: PMC11511136 DOI: 10.3390/polym16202867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Due to their mechanical robustness and chemical resistance, composite electrospun membranes based on polyvinyl chloride (PVC) are suitable for sensor applications. Aiming to improve the electrical characteristics of these membranes, this work investigated the effects of the addition of carbon nanotubes (CNTs) to PVC electrospun membranes, in terms of morphology and thermal and impedance behavior. Transmission electron microscopy images evidenced that most of the nanotubes were encapsulated within the fibers and oriented along them, while field-emission scanning electron micrographs revealed that the membranes consisted of uniform fibers with an average diameter of 339 ± 31 nm, regardless of the addition of the carbon nanotubes. With respect to the neat resin, the addition of nanotubes caused a significant lowering of the glass transition temperature (up to 20 °C) and a marked change in the second degradation step of PVC. Nyquist plots from electrical impedance spectra showed a charge transfer resistance (RCT) of 38 and 40 MΩ for neat PVC and PVC/CNT 3 wt.% membranes, respectively, indicating that, in the dry state, the encapsulation of CNTs in the fibers and the high porosity of the membranes prevented the formation of a percolation network, increasing the electrical resistance. In the wet state, however, there was a greater change in the impedance behavior, decreasing the resistance RCT to 4.5 and 1.1 MΩ, for neat PVC and PVC/CNT 3 wt.% membranes, respectively. The results of this study, showing a significant variation in impedance behavior between dry and wet membranes, are relevant for the development of various types of sensors based on PVC composites.
Collapse
Affiliation(s)
- Marcio Briesemeister
- Department of Materials Science and Engineering, Santa Catarina State University, Joinville 89219-710, Brazil;
| | | | - Pedro Bertemes-Filho
- Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil
| | | |
Collapse
|
2
|
Escriba Flores AA, de Almeida DS, Aguiar ML, Cava CE. Enhanced Air Filtration Efficiency through Electrospun PVC/PVP/MWCNTs Nanofibers: Design, Optimization, and Performance Evaluation. ACS OMEGA 2024; 9:37771-37779. [PMID: 39281912 PMCID: PMC11391459 DOI: 10.1021/acsomega.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
This study presents a novel approach for creating an effective air filtration medium using electrospun nanofibers comprised of poly(vinyl chloride) (PVC), poly(vinylpyrrolidone) (PVP), and impregnated with multiwall carbon nanotubes (MWCNTs). The membrane production was optimized using an experimental design methodology, resulting in a hydrophobic membrane that exhibits excellent dispersion of MWCNTs. Scanning electron microscopy images illustrate the nanofibers' morphology, featuring an average diameter of approximately 240 nm, minimal bead formation, and optimal MWCNT dispersion. Air filtration tests conducted with NaCl nanoparticles (7-300 nm) demonstrated superior permeability (10-12 m2) and minimal pressure drop (approximately 780 Pa at a 5 LPM airflow rate) compared to other electrospun materials. Both MWCNT-impregnated samples and individual PVC/PVP nanofibers exhibited filtration efficiencies nearing 96%. These results underscore the potential of this developed material for air filtration, particularly in indoor environments, where MWCNTs effectively adsorb and maintain low levels of gaseous and particulate pollutants. This study emphasizes the design, optimization, and comprehensive performance evaluation of PVC/PVP/MWCNT nanofibers, showcasing significant advancements in filtration efficiency with high flux. The findings suggest promising applications for this composite material in advanced air purification systems.
Collapse
Affiliation(s)
- Armando A Escriba Flores
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR 86036-370, Brazil
| | | | - Monica Lopes Aguiar
- Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos, SP 13565-905, Brazil
| | - Carlos Eduardo Cava
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR 86036-370, Brazil
| |
Collapse
|
3
|
Heidarian P, Aziz S, Halley PJ, McNally T, Peijs T, Vandi LJ, Varley RJ. Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate) Self-Reinforced Composites via Solvent-Induced Interfiber Welding of Nanofibers. Biomacromolecules 2024; 25:5039-5047. [PMID: 39041249 DOI: 10.1021/acs.biomac.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In this study, we explore an approach to enhance the mechanical performance of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by utilizing the self-reinforcing effect of β-phase-induced PHBV electrospun nanofiber mats. This involves electrospinning combined with low-temperature postspun vapor solvent interfiber welding. Scanning electron microscopy imaging confirmed fiber alignment, while XRD diffraction revealed the presence of both α and β crystalline phases under optimized electrospinning conditions. The resulting composite exhibited significant improvements in mechanical properties attributed to the formation of more perfectly structured α and β polymorphs and enhanced interfacial adhesion of electrospun nanofibers after vapor solvent treatment. This approach offers entirely recyclable and biodegradable materials, presenting the potential for a new family of sustainable bioplastics.
Collapse
Affiliation(s)
- Pejman Heidarian
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Shazed Aziz
- School of Chemical Engineering, University of Queensland, St Lucia 4072, Australia
| | - Peter J Halley
- School of Chemical Engineering, University of Queensland, St Lucia 4072, Australia
- Centre for Advanced Materials Processing and Manufacturing AMPAM, The University of Queensland, St Lucia 4072, Australia
| | - Tony McNally
- International Institute for Nanocomposite Manufacturing (IINM), University of Warwick, Coventry CV4 74L, U.K
| | - Ton Peijs
- Materials Engineering Centre, WMG, University of Warwick, Coventry CV4 74L, U.K
| | - Luigi-Jules Vandi
- School of Mechanical and Mining Engineering, University of Queensland, St Lucia 4072, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
4
|
Hami SSBM, Affandi NDN, Indrie L, Tripa S, Harun AM, Ahmad MR. Enhancing Mechanical Properties and Flux of Nanofibre Membranes for Water Filtration. Polymers (Basel) 2023; 15:3281. [PMID: 37571175 PMCID: PMC10422239 DOI: 10.3390/polym15153281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Nanofibres have gained attention for their highly porous structure, narrow pore size, and high specific surface area. One of the most efficient techniques for producing nanofibres is electrospinning. These fibres are used in various fields, including water filtration. Although they possess the ability to filter various components, the fibres generally have low mechanical strength, which can mitigate their performance over time. To address this, studies have focused on enhancing nanofibre membrane strength for water filtration. Previous analyses show that the mechanical properties of nanofibre mats can be improved through solvent vapour treatment, thermal treatment, and chemical crosslinking. These treatments promote interfibre bonding, leading to the improvement of mechanical strength. However, excessive treatment alters nanofibre behaviour. Excessive heat exposure reduces interfibre bonding, while too much solvent vapour decreases pore size and mechanical strength. Thus, a comprehensive understanding of these post-treatments is crucial. This review examines post-treatments aiming to increase the mechanical strength of nanofibre mats, discussing their advantages and disadvantages. Understanding these treatments is essential for optimising nanofibre membrane performance in water filtration and other applications.
Collapse
Affiliation(s)
- Siddratul Sarah Binti Mohd Hami
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (S.S.B.M.H.); (M.R.A.)
| | - Nor Dalila Nor Affandi
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (S.S.B.M.H.); (M.R.A.)
| | - Liliana Indrie
- Department of Textiles, Leather and Industrial Management, Faculty of Energy Engineering and Industrial Management, University of Oradea, Universitatii Str. No. 1, 410087 Oradea, Romania;
| | - Simona Tripa
- Department of Textiles, Leather and Industrial Management, Faculty of Energy Engineering and Industrial Management, University of Oradea, Universitatii Str. No. 1, 410087 Oradea, Romania;
| | - Ahmad Mukifza Harun
- Nano Lab, Faculty Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohd Rozi Ahmad
- Textile Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (S.S.B.M.H.); (M.R.A.)
| |
Collapse
|
5
|
Improving the Physical Properties of Nanofibers Prepared by Electrospinning from Polyvinyl Chloride and Polyacrylonitrile at Low Concentrations. ADVANCES IN POLYMER TECHNOLOGY 2023. [DOI: 10.1155/2023/1811577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
In this study, both polyvinyl chloride (PVC) and polyacrylonitrile (PAN) were dissolved in dimethyl formaldehyde (DMF) with 8 wt. % concentrations at 25 : 75, 50 : 50, and 75 : 25 of PVC: PAN blending. For the investigation of the homogeneity and compatibility of mixture polymer solutions, it is examined by rheological properties such as viscosity, shear stress, shear rate, and calculation of the flow behavior index, while the investigation of the stability and high density of nanofibers without beads used field-emission scanning electron microscopy (FE-SEM), Fourier transform near-infrared spectroscopy (FT-NIR), X-ray diffraction (XRD), and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The results show that blending of PAN with PVC leads to improving of the electro spun ability of PVC with more stability, and the mean nanofiber diameter was
at 25 : 75 PVC: PAN. Moreover, mechanical properties are ultimate tensile strength and modulus of elasticity decreasing with decreasing the blending ration from pure PVC to 75 : 25 PVC: PAN nanofibers by 71% and 83%, respectively, while the elongation at break increases by 79%, and decomposition temperatures decreased from 451.96 to 345.38°C when changing the PVC content from pure PVC to 25 : 75 PVC: PAN. On the other hand, changing of the nanofiber behavior from hydrophobicity to hydrophilic increased the PAN content in PVC: PAN blends. Furthermore, the low interaction between the chains of polymers and the crystallinity (%) and crystalline size (nm) of blend nanofibers slightly decreased compared to the pure polymers. According to all tests, the 25: 75 PVC: PAN was the best blending ratio, which gave a more stable nanofiber produced at low concentrations and more compatible between the PVC and PAN.
Collapse
|
6
|
Du X, Zheng H, Zhang Y, Zhao N, Chen M, Huang Q. Pore structure design and optimization of electrospun PMIA nanofiber membrane. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Wang H, Han Z, Liu Y, Zheng M, Liu Z, Wang W, Fan Y, Han D, Niu L. Recyclable Composite Membrane of Polydopamine and Graphene Oxide-Modified Polyacrylonitrile for Organic Dye Molecule and Heavy Metal Ion Removal. MEMBRANES 2022; 12:938. [PMID: 36295697 PMCID: PMC9609451 DOI: 10.3390/membranes12100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient and recyclable membranes for water contaminant removal still remains a challenge in terms of practical applications. Herein, a recyclable membrane constituted of polyacrylonitrile-graphene and oxide-polydopamine was fabricated and demonstrated efficient adsorption capacities with respect to heavy metal ions (62.9 mg g-1 of Cu2+ ion, CuSO4 50 mg L-1) and organic dye molecules (306.7 mg g-1 of methylene blue and 339.6 mg g-1 of eriochrome black T, MB/EBT 50 mg L-1). The polyacrylonitrile fibers provide the skeleton of the membrane, while the graphene oxide and polydopamine endow the membrane with hydrophilicity, which is favorable for the adsorption of pollutants in water. Benefitting from the protonation and deprotonation effects of graphene oxide and polydopamine, the obtained membrane demonstrated promotion of the selective adsorption or desorption of pollutant molecules. This guarantees that the adsorbed pollutant molecules can be desorbed promptly from the membrane through simple pH adjustment, ensuring the reusability of the membrane. After ten adsorption-desorption cycles, the membrane could still maintain a desirable adsorption capacity. In addition, compared with other, similar membranes reported, this composite membrane displays the highest mechanical stability. This work puts forward an alternative strategy for recyclable membrane design and expects to promote the utilization of membrane techniques in practical wastewater treatment.
Collapse
Affiliation(s)
- Haoyu Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiyun Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanjuan Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Maojin Zheng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhenbang Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yingying Fan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Duceac IA, Tanasa F, Coseri S. Selective Oxidation of Cellulose-A Multitask Platform with Significant Environmental Impact. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5076. [PMID: 35888547 PMCID: PMC9324530 DOI: 10.3390/ma15145076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Raw cellulose, or even agro-industrial waste, have been extensively used for environmental applications, namely industrial water decontamination, due to their effectiveness, availability, and low production cost. This was a response to the increasing societal demand for fresh water, which made the purification of wastewater one of the major research issue for both academic and industrial R&D communities. Cellulose has undergone various derivatization reactions in order to change the cellulose surface charge density, a prerequisite condition to delaminate fibers down to nanometric fibrils through a low-energy process, and to obtain products with various structures and properties able to undergo further processing. Selective oxidation of cellulose, one of the most important methods of chemical modification, turned out to be a multitask platform to obtain new high-performance, versatile, cellulose-based materials, with many other applications aside from the environmental ones: in biomedical engineering and healthcare, energy storage, barrier and sensing applications, food packaging, etc. Various methods of selective oxidation have been studied, but among these, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (TEMPO)-mediated and periodate oxidation reactions have attracted more interest due to their enhanced regioselectivity, high yield and degree of substitution, mild conditions, and the possibility to further process the selectively oxidized cellulose into new materials with more complex formulations. This study systematically presents the main methods commonly used for the selective oxidation of cellulose and provides a survey of the most recent reports on the environmental applications of oxidized cellulose, such as the removal of heavy metals, dyes, and other organic pollutants from the wastewater.
Collapse
Affiliation(s)
| | - Fulga Tanasa
- Department of Polyaddition and Photochemistry, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (I.A.D.); (S.C.)
| | | |
Collapse
|
9
|
Enhancement of Physical Characteristics of Styrene-Acrylonitrile Nanofiber Membranes Using Various Post-Treatments for Membrane Distillation. MEMBRANES 2021; 11:membranes11120969. [PMID: 34940469 PMCID: PMC8705235 DOI: 10.3390/membranes11120969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
Abstract
Insufficient mechanical strength and wide pore size distribution of nanofibrous membranes are the key hindrances for their concrete applications in membrane distillation. In this work, various post-treatment methods such as dilute solvent welding, vapor welding, and cold-/hot-pressing processes were used to enhance the physical properties of styrene–acrylonitrile (SAN) nanofiber membranes fabricated by the modified electrospinning process. The effects of injection rate of welding solution and a working distance during the welding process with air-assisted spraying on characteristics of SAN nanofiber membranes were investigated. The welding process was made less time-consuming by optimizing system parameters of the electroblowing process to simultaneously exploit residual solvents of fibers and hot solvent vapor to reduce exposure time. As a result, the welded SAN membranes showed considerable enhancement in mechanical robustness and membrane integrity with a negligible reduction in surface hydrophobicity. The hot-pressed SAN membranes obtained the highest mechanical strength and smallest mean pore size. The modified SAN membranes were used for the desalination of synthetic seawater in a direct contact membrane distillation (DCMD). As a result, it was found that the modified SAN membranes performed well (>99.9% removal of salts) for desalination of synthetic seawater (35 g/L NaCl) during 30 h operation without membrane wetting. The cold-/hot-pressing processes were able to improve mechanical strength and boost liquid entry pressure (LEP) of water. In contrast, the welding processes were preferred to increase membrane flexibility and permeation.
Collapse
|
10
|
Svyntkivska M, Makowski T, Piorkowska E, Brzezinski M, Herc A, Kowalewska A. Modification of Polylactide Nonwovens with Carbon Nanotubes and Ladder Poly(silsesquioxane). Molecules 2021; 26:1353. [PMID: 33802604 PMCID: PMC7961909 DOI: 10.3390/molecules26051353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Electrospun nonwovens of poly(L-lactide) (PLLA) modified with multiwall carbon nanotubes (MWCNT) and linear ladder-like poly(silsesquioxane) with methoxycarbonyl side groups (LPSQ-COOMe) were obtained. MWCNT and LPSQ-COOMe were added to the polymer solution before the electrospinning. In addition, nonwovens of PLLA grafted to modified MWCNT were electrospun. All modified nonwovens exhibited higher tensile strength than the neat PLA nonwoven. The addition of 10 wt.% of LPSQ-COOMe and 0.1 wt.% of MWCNT to PLLA increased the tensile strength of the nonwovens 2.4 times, improving also the elongation at the maximum stress.
Collapse
Affiliation(s)
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (E.P.); (M.B.); (A.H.); (A.K.)
| | | | | | | | | |
Collapse
|
11
|
A Review on Electrospun PVC Nanofibers: Fabrication, Properties, and Application. FIBERS 2021. [DOI: 10.3390/fib9020012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyvinyl chloride (PVC) is a widely used polymer, not only in industry, but also in our daily life. PVC is a material that can be applied in many different fields, such as building and construction, health care, and electronics. In recent decades, the success of electrospinning technology to fabricate nanofibers has expanded the applicability of polymers. PVC nanofibers have been successfully manufactured by electrospinning. By changing the initial electrospinning parameters, it is possible to obtain PVC nanofibers with diameters ranging from a few hundreds of nanometers to several micrometers. PVC nanofibers have many advantages, such as high porosity, high mechanical strength, large surface area, waterproof, and no toxicity. PVC nanofibers have been found to be very useful in many fields with a wide variety of applications such as air filtration systems, water treatment, oil spill treatment, batteries technology, protective clothing, corrosion resistance, and many others. This paper reviews the fabricating method, properties, applications, and prospects of PVC nanofibers.
Collapse
|
12
|
Nauman S, Lubineau G, Alharbi HF. Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review. MEMBRANES 2021; 11:membranes11010039. [PMID: 33466446 PMCID: PMC7824849 DOI: 10.3390/membranes11010039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Electrospinning is a versatile technique which results in the formation of a fine web of fibers. The mechanical properties of electrospun fibers depend on the choice of solution constituents, processing parameters, environmental conditions, and collector design. Once electrospun, the fibrous web has little mechanical integrity and needs post fabrication treatments for enhancing its mechanical properties. The treatment strategies include both the chemical and physical techniques. The effect of these post fabrication treatments on the properties of electrospun membranes can be assessed through either conducting tests on extracted single fiber specimens or macro scale testing on membrane specimens. The latter scenario is more common in the literature due to its simplicity and low cost. In this review, a detailed literature survey of post fabrication strength enhancement strategies adopted for electrospun membranes has been presented. For optimum effect, enhancement strategies have to be implemented without significant loss to fiber morphology even though fiber diameters, porosity, and pore tortuosity are usually affected. A discussion of these treatments on fiber crystallinity, diameters, and mechanical properties has also been produced. The choice of a particular post fabrication strength enhancement strategy is dictated by the application area intended for the membrane system and permissible changes to the initial fibrous morphology.
Collapse
Affiliation(s)
- Saad Nauman
- COHMAS Laboratory, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- MS&E Department, Institute of Space Technology, Islamabad 44000, Pakistan
- Correspondence: (S.N.); (G.L.); Tel.: +92-343-5855387 or +92-051-9075567 (S.N.); +966-(12)-808-2983 (G.L.); Fax: +92-51-9273310 (S.N.)
| | - Gilles Lubineau
- COHMAS Laboratory, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Correspondence: (S.N.); (G.L.); Tel.: +92-343-5855387 or +92-051-9075567 (S.N.); +966-(12)-808-2983 (G.L.); Fax: +92-51-9273310 (S.N.)
| | - Hamad F. Alharbi
- Mechanical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| |
Collapse
|
13
|
Zhang R, Ma Y, Lan W, Sameen DE, Ahmed S, Dai J, Qin W, Li S, Liu Y. Enhanced photocatalytic degradation of organic dyes by ultrasonic-assisted electrospray TiO 2/graphene oxide on polyacrylonitrile/β-cyclodextrin nanofibrous membranes. ULTRASONICS SONOCHEMISTRY 2021; 70:105343. [PMID: 32977274 PMCID: PMC7786584 DOI: 10.1016/j.ultsonch.2020.105343] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
Polyacrylonitrile (PAN)/β-cyclodextrin (β-CD) composite nanofibrous membranes immobilized with nano-titanium dioxide (TiO2) and graphene oxide (GO) were prepared by electrospinning and ultrasonic-assisted electrospinning. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) confirmed that TiO2 and GO were more evenly dispersed on the surface and inside of the nanofibers after 45 min of ultrasonic treatment. Adding TiO2 and GO reduced the fiber diameter; the minimum fiber diameter was 84.66 ± 40.58 nm when the mass ratio of TiO2-to-GO was 8:2 (PAN/β-CD nanofibrous membranes was 191.10 ± 45.66 nm). Using the anionic dye methyl orange (MO) and the cationic dye methylene blue (MB) as pollutant models, the photocatalytic activity of the nanofibrous membrane under natural sunlight was evaluated. It was found that PAN/β-CD/TiO2/GO composite nanofibrous membrane with an 8:2 mass ratio of TiO2-to-GO exhibited the best degradation efficiency for the dyes. The degradation efficiency for MB and MO were 93.52 ± 1.83% and 90.92 ± 1.52%, respectively. Meanwhile, the PAN/β-CD/TiO2/GO composite nanofibrous membrane also displayed good antibacterial properties and the degradation efficiency for MB and MO remained above 80% after 3 cycles. In general, the PAN/β-CD/TiO2/GO nanofibrous membrane is eco-friendly, reusable, and has great potential for the removal of dyes from industrial wastewaters.
Collapse
Affiliation(s)
- Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yanlan Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wenting Lan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Zaidouny L, Abou‐Daher M, Tehrani‐Bagha AR, Ghali K, Ghaddar N. Electrospun nanofibrous polyvinylidene fluoride‐co‐hexafluoropropylene membranes for
oil–water
separation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lamiss Zaidouny
- B. & W. Bassatne Department of Chemical Engineering and Advanced EnergyAmerican University of Beirut Beirut Lebanon
| | - Mohamad Abou‐Daher
- B. & W. Bassatne Department of Chemical Engineering and Advanced EnergyAmerican University of Beirut Beirut Lebanon
| | - Ali R. Tehrani‐Bagha
- B. & W. Bassatne Department of Chemical Engineering and Advanced EnergyAmerican University of Beirut Beirut Lebanon
| | - Kamel Ghali
- Department of Mechanical EngineeringAmerican University of Beirut Beirut Lebanon
| | - Nesreen Ghaddar
- Department of Mechanical EngineeringAmerican University of Beirut Beirut Lebanon
| |
Collapse
|
15
|
Ali I, Yang W, Li X, Ali A, Jiao Z, Xie P, Dias OAT, Pervaiz M, Li H, Sain M. Highly electro-responsive plasticized PVC/FMWCNTs soft composites: A novel flex actuator with functional characteristics. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Su C, Lu C, Horseman T, Cao H, Duan F, Li L, Li M, Li Y. Dilute solvent welding: A quick and scalable approach for enhancing the mechanical properties and narrowing the pore size distribution of electrospun nanofibrous membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Wang X, Xiao C, Liu H, Chen M, Xu H, Luo W, Zhang F. Robust functionalization of underwater superoleophobic PVDF-HFP tubular nanofiber membranes and applications for continuous dye degradation and oil/water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Preparation of carbon nanofiber with multilevel gradient porous structure for supercapacitor and CO2 adsorption. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Luo L, Wu H, Liu Y, Huang J, Liu X. Synergistic “Anchor” Effect of Carbon Nanotubes and Silica: A Facile and Efficient Double-Nanocomposite System To Reinforce High-Performance Polyimide Fibers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Longbo Luo
- State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hang Wu
- Beijing Special Vehicle Institute, Beijing 100072, P. R. China
| | - Yang Liu
- State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jieyang Huang
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiangyang Liu
- State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
20
|
Shen Y, Li D, Deng B, Liu Q, Liu H, Wu T. Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190596. [PMID: 31598247 PMCID: PMC6731741 DOI: 10.1098/rsos.190596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Due to the high porosity, resilience and ultra-low density, polymer nanofibre-derived aerogels (NFAs) have been widely investigated in recent years. However, welding of the fibrous networks of NFAs, which has been proved extremely essential to their structural performance, still remains a major challenge. Herein, electrospun polyimide (PI) nano/microfibres were used as building blocks to construct hierarchically porous aerogels through a solid-templating technique. By further welding the adjacent nano/microfibres at their cross-points in a controllable fashion by solvent-vapour, super elasticity was achieved for the aerogels, with a recoverable ultimate strain of 80%. It is noteworthy that this process is free from cross-linking, heating and significant structure changing (i.e. chemical structure, crystallinity and fibrous network). Additionally, the porous structure of PI nano/microfibre aerogels (PI-N/MFAs) could be tuned by adjusting the organization of microfibres from a disordered/ordered cellular to a uniform structure. The as-obtained aerogels showed ultra-low density (4.81 mg cm-3), high porosity (99.66%), and comparable or higher recoverable compressive strain and stress relative to the other nanofibre-based aerogels. Furthermore, we showed the potential of such an aerogel for particle or aerosol filtration. PI nanofibre aerogels composite filters (PI-NFACFs) manifested excellent performance in PM2.0 filtration (99.6% filtration efficiency with 115 Pa pressure drop). Therefore, this study brought a new perspective on the simple preparation of nanofibre-based aerogels for air filtration.
Collapse
Affiliation(s)
- Ying Shen
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Qingsheng Liu
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Huizhong Liu
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi 214122, China
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Xu Z, Fan L, Ni X, Han J, Guo R. Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Adv 2019; 9:8753-8758. [PMID: 35517654 PMCID: PMC9061834 DOI: 10.1039/c8ra10201e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/11/2019] [Indexed: 11/21/2022] Open
Abstract
Tin (Sn) has wide prospects in applications as an anode electrode material for Li-ion batteries, due to its high theoretical specific capacity. However, the large volume expansion of Sn during the charge-discharge process causes a performance reduction of lithium-ion batteries (LIBs). Here, Sn encapsulated N-doped porous carbon fibers (Sn/NPCFs) were synthesized through an electrospinning method with a pyrolysis process. This structure was beneficial for the lithium ion/electron diffusion and buffered the large volume change. By adjusting the amount of Sn, the hybrid carbon fibers with different Sn/carbon ratios could be prepared, and the morphology, composition and properties of the Sn/NPCFs were characterized systematically. The results indicated that the Sn/NPCFs with a Sn-precursor/polymer weight ratio at 0.5 : 1 showed the best cycling stability and specific capacity, preserving the specific capacity of 400 mA h g-1 at the current density of 500 mA g-1 even after 100 cycles.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Xiangying Ni
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| |
Collapse
|