1
|
Weng J, Tian Y, Zhang X, Chen F, Wang Z, Sun M, He J. Analysis of Trace Enrofloxacin in Environmental Waters by a Surface Molecular Imprinting Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23279-23288. [PMID: 39441868 DOI: 10.1021/acs.langmuir.4c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Surface-imprinted polymers (ZIF-67@MIPs) supported by ZIF-67 were prepared by precipitation polymerization using enrofloxacin (ENR) as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. ZIF-67@MIPs were characterized by Fourier transform infrared spectrometry, X-ray diffraction, scanning electron microscopy, and particle size distribution. The adsorption performance of the polymer was studied. The adsorption equilibrium was reached within 30 min. The maximum adsorption was 9.02 μg·mg-1. The imprinting factor was 2.58. The polymer was then used as a sorbent of a solid-phase extraction column for the separation and purification of ENR in real water samples. The extraction conditions were optimized. The method was established by high-performance liquid chromatography, and the linearity was verified by UPLC-MSMS. The correlation coefficient and limits of detection and quantification were 0.9999, 0.23 ng·mL-1, and 0.76 ng·mL-1, respectively. The recoveries were in the range of 83.79-100.68%; the relative standard deviation was 4.46-7.35%. The above data indicated that the method could be used for the separation and enrichment of ENR in real samples.
Collapse
Affiliation(s)
- Jiaojing Weng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Tian
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fuyin Chen
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyi Wang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyuan Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Juan He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Ru Y, Gong X, Lu W, Chen L, Wei L, Dai Q. Enhanced ozonation of vanillin catalyzed by highly efficient magnetic MnFe 2O 4/ZIF-67 catalysts: Synergistic effects and mechanism insights. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11027. [PMID: 38659148 DOI: 10.1002/wer.11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/16/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
In this study, we synthesized magnetic MnFe2O4/ZIF-67 composite catalysts using a straightforward method, yielding catalysts that exhibited outstanding performance in catalyzing the ozonation of vanillin. This exceptional catalytic efficiency arose from the synergistic interplay between MnFe2O4 and ZIF-67. Comprehensive characterization via x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FE-SEM), and energy dispersive spectroscopy (EDS) confirmed that the incorporation of MnFe2O4 promoted the creation of oxygen vacancies, resulting in an increased presence of l adsorbed oxygen (Oads) and the generation of additional ·OH groups on the catalyst surface. Utilizing ZIF-67 as the carrier markedly enhanced the specific surface area of the catalyst, augmenting the exposure of active sites, thus improving the degradation efficiency and reducing the energy consumption. The effects of different experimental parameters (catalyst type, initial vanillin concentration, ozone dosage, initial pH value, and catalyst dosage) were also investigated, and the optimal experimental parameters (300 mg/L1.0-MnFe2O4/ZIF-67, vanillin concentration = 250 mg/L, O3 concentration = 12 mg/min, pH = 7) were obtained. The vanillin removal efficiency of MnFe2O4/ZIF-67 was increased from 74.95% to 99.54% after 30 min of reaction, and the magnetic separation of MnFe2O4/ZIF-67 was easy to be recycled and stable, and the vanillin removal efficiency of MnFe2O4/ZIF-67 was only decreased by about 8.92% after 5 cycles. Additionally, we delved into the synergistic effects and catalytic mechanism of the catalysts through kinetic fitting, reactive oxygen quenching experiments, and electron transfer analysis. This multifaceted approach provides a comprehensive understanding of the enhanced ozonation process catalyzed by MnFe2O4/ZIF-67 composite catalysts, shedding light on their potential applications in advanced oxidation processes. PRACTITIONER POINTS: A stable and recyclable magnetic composite MnFe2O4/ZIF-67 catalyst was synthesized through a simple method. The synergistic effect and catalytic mechanism of the MnFe2O4/ZIF-67 catalyst were comprehensively analyzed and discussed. A kinetic model for the catalytic ozone oxidation of vanillin was introduced, providing valuable insights into the reaction dynamics.
Collapse
Affiliation(s)
- Yifan Ru
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | | | - Wangyang Lu
- Zhejiang Yiwu Water Supply Company Limited, Yiwu, China
| | - Lu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lanlan Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Jitjamnong J, Khongprom P, Ratanawilai T, Ratanawilai S. Glycerol carbonate synthesis via transesterification of enriched glycerol and dimethyl carbonate using a Li-incorporated MCM-41 framework. RSC Adv 2024; 14:5941-5958. [PMID: 38375007 PMCID: PMC10875607 DOI: 10.1039/d4ra00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Waste crude glycerol was successfully enriched and utilized as an inexpensive source for producing value-added chemicals, such as glycerol carbonate (GC) - a valuable compound with extensive industrial applications. The Li/MCM-41 heterogeneous catalyst was synthesized and used for the transesterification of enriched glycerol and dimethyl carbonate (DMC) to produce GC. The catalyst's physicochemical properties were characterized using thermogravimetric, Hammett indicator, inductively coupled plasma-optical emission spectroscopy, nitrogen adsorption-desorption, X-ray diffractometry, scanning electron microscopy, and Fourier-transform infrared spectroscopy analyses. Reaction conditions were optimized using response surface methodology and analysis of variance, yielding an accurate quadratic model to predict the GC yield under different transesterification variables. The results revealed that 5%Li/MCM-41 served as the optimal catalyst, achieving the highest TOF of 4.72 h-1. The DMC: enriched glycerol molar ratio had the greatest impact on the GC yield, with an R2 = 0.9743 and adjusted R2 = 0.9502. The optimal GC yield (58.77%) with a final purity of 78% was attained at a 5.15 wt% catalyst loading relative to the initial amount of enriched glycerol, DMC: enriched glycerol molar ratio of 4.24 : 1, and a reaction temperature of 86 °C for 165 min. The 5%Li/MCM-41 heterogeneous catalyst could be reused for four cycles with a decreased GC yield from 58.77% to 45.72%. Thus, the Li/MCM-41 catalyst demonstrated a remarkable efficiency and potential as a heterogeneous catalyst for synthesizing GC. This method not only contributes to environmental sustainability by making use of a byproduct from biodiesel production but also aligns with the principles of a circular economy.
Collapse
Affiliation(s)
- Jakkrapong Jitjamnong
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Parinya Khongprom
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University Songkhla 90110 Thailand
| | - Thanate Ratanawilai
- Department of Industrial and Manufacturing Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sukritthira Ratanawilai
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
4
|
Shi Y, Kong D, Li W, Wei Y, Wei X, Qu F, Zhang Y, Nie P, Feng X, He Y. A novel ratiometric fluorescent probe for sensitive detection of jasmonic acid in crops. Anal Chim Acta 2023; 1244:340844. [PMID: 36737147 DOI: 10.1016/j.aca.2023.340844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Herein, a novel ratiometric fluorescent probe was proposed for sensitive detection of jasmonic acid (JA) based on NCQDs@Co-MOFs@MIPs. The prepared NCQDs, with uniquely dual-emissive performance, are insensitive to JA due to electrostatic repulsion. Interestingly, the introduction of Co-MOFs not only avoided the self-aggregation of NCQDs, but changed the surface charge of NCQDs and triggered the response of NCQDs to JA. More importantly, the imprinted recognition sites from MIPs provided "key-lock" structures to specifically capture JA molecules, greatly improving the selectivity of the probe to JA. Under the synergistic actions of Co-MOFs and MIPs, JA can interact with NCQDs through photo-induced electron transfer (PET), resulting in the changes on emission intensity of the probe at Em = 367 nm and 442 nm. Based on the observations, the quantification of JA was realized in the range of 1-800 ng/mL with the limit of detection (LOD) of 0.35 ng/mL. In addition, the probe was used for detecting JA in rice with satisfactory analysis results, indicating the probe holds great potential for monitoring JA levels in crops. Overall, this strategy provides new insights into the construction of practical probes for sensitive detection of plant hormones in crops.
Collapse
Affiliation(s)
- Yongqiang Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dandan Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xiao Wei
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fangfang Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yahui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Huanan Industrial Technology Research Institute of Zhejiang University, Guangzhou, Guangdong, 510700, China.
| |
Collapse
|
5
|
Gao Z, Xiang M, He M, Zhou W, Chen J, Lu J, Wu Z, Su Y. Transformation of CO 2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst. Molecules 2023; 28:molecules28052272. [PMID: 36903515 PMCID: PMC10004741 DOI: 10.3390/molecules28052272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Catalytic conversion of CO2 with the surplus glycerol (GL) produced from biodiesel manufacturing has attracted much academic and industrial attention, which proves the urgent requirement for developing high-performance catalysts to afford significant environmental benefits. Herein, titanosilicate ETS-10 zeolite-based catalysts with active metal species introduced by impregnation were employed for coupling CO2 with GL to efficiently synthesize glycerol carbonate (GC). The catalytic GL conversion at 170 °C miraculously reached 35.0% and a 12.7% yield of GC was obtained on Co/ETS-10 with CH3CN as a dehydrating agent. For comparison, Zn/ETS- Cu/ETS-10, Ni/ETS-10, Zr/ETS-10, Ce/ETS-10, and Fe/ETS-10 were also prepared, which showed inferior coordination between GL conversion and GC selectivity. Comprehensive analysis revealed that the presence of moderate basic sites for CO2 adsorption-activation played a crucial role in regulating catalytic activity. Moreover, the appropriate interaction between cobalt species and ETS-10 zeolite was also of great significance for improving the glycerol activation capacity. A plausible mechanism was proposed for the synthesis of GC from GL and CO2 in the presence of CH3CN solvent over Co/ETS-10 catalyst. Moreover, the recyclability of Co/ETS-10 was also measured and it proved to be recycled at least eight times with less than 3% decline in GL conversion and GC yield after a simple regeneration process through calcination at 450 °C for 5 h in air.
Collapse
Affiliation(s)
- Zhangxi Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Mingyang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Weiyou Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiayao Chen
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jiamin Lu
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zeying Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- Correspondence: (Z.W.); (Y.S.)
| | - Yaqiong Su
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (Z.W.); (Y.S.)
| |
Collapse
|
6
|
de Paula GM, Eid JG, Cardoso D. Converting glycerol into glycerol carbonate by transesterification with different esters: reaction steps and coproducts. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Liu Y, Zhong B, Lawal A. Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv 2022; 12:27997-28008. [PMID: 36320273 PMCID: PMC9523763 DOI: 10.1039/d2ra05090k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Biodiesel production has increased significantly in the past decade because it has been demonstrated to be a viable alternative and renewable fuel. Consequently, the production of crude glycerol, the main byproduct of the transesterification of lipids to biodiesel, has risen as well. Therefore, the effective recovery and utilization of crude glycerol can provide biodiesel with additional value. In this review, we first summarized the state-of-the-art progress on crude glycerol recovery and purification. Subsequently, numerous approaches have been reviewed for the utilization of crude glycerol, including use as animal feeds, for combustion, anaerobic fermentation, and chemical conversion. Finally, an extensive discussion and outlook is presented in relation to the techniques and processes in the chemical conversion of crude glycerol.
Collapse
Affiliation(s)
- Yujia Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Biqi Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Adeniyi Lawal
- New Jersey Center for MicroChemical Systems, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
8
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
9
|
Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over CaO-SBA-15 catalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Muzyka C, Monbaliu JCM. Perspectives for the Upgrading of Bio-Based Vicinal Diols within the Developing European Bioeconomy. CHEMSUSCHEM 2022; 15:e202102391. [PMID: 34919322 DOI: 10.1002/cssc.202102391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The previous decade has witnessed a drastic increase of European incentives aimed at pushing forward the transition from an exclusively petro-based economy toward a strong and homogeneous bio-based economy. Since 2012, numerous programs have been developed to stimulate and promote research and innovation relying on sustainable and renewable resources. Terrestrial biomass is a virtually infinite reservoir of biomacromolecules, the biorefining of which provides platform molecules of low complexity yet with tremendous industrial potential. Among such bio-based platform molecules, polyols and, more specifically, molecules featuring vicinal diols have gained tremendous interest and have stimulated an increasing research effort from the chemistry and chemical engineering communities. This Review revolves around the most promising process conditions and technologies reported since 2012 that specifically target bio-based vicinal diols and promote their transformation into value-added molecules of wide industrial interest, such as olefins, epoxides, cyclic carbonates, and ketals.
Collapse
Affiliation(s)
- Claire Muzyka
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| |
Collapse
|
11
|
Lin Z, Ammal SC, Denny SR, Rykov SA, You KE, Heyden A, Chen JG. Unraveling Unique Surface Chemistry of Transition Metal Nitrides in Controlling Selective C-O Bond Scission Pathways of Glycerol. JACS AU 2022; 2:367-379. [PMID: 35252987 PMCID: PMC8889611 DOI: 10.1021/jacsau.1c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 05/24/2023]
Abstract
Controlled C-O bond scission is an important step for upgrading glycerol, a major byproduct from the continuously increasing biodiesel production. Transition metal nitride catalysts have been identified as promising hydrodeoxygenation (HDO) catalysts, but fundamental understanding regarding the active sites of the catalysts and reaction mechanism remains unclear. This work demonstrates a fundamental surface science study of Mo2N and Cu/Mo2N for the selective HDO reaction of glycerol, using a combination of model surface experiments and first-principles calculations. Temperature-programmed desorption (TPD) experiments showed that clean Mo2N cleaved two or three C-O bonds of glycerol to produce allyl alcohol, propanal, and propylene. The addition of Cu to Mo2N changed the reaction pathway to one C-O bond scission to produce acetol. High-resolution electron energy loss spectroscopy (HREELS) results identified the surface intermediates, showing a facile C-H bond activation on Mo2N. Density functional theory (DFT) calculations revealed that the surface N on Mo2N interacted with the H atoms in glycerol and blocked some Mo sites to enable selective C-O bond scission. This work shows that Mo2N and Cu/Mo2N are active and selective for the controlled C-O bond scission of glycerol and in turn provides insights into the rational catalyst design for selective oxygen removal of relevant biomass-derived oxygenates.
Collapse
Affiliation(s)
- Zhexi Lin
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Salai C. Ammal
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Steven R. Denny
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sergei A. Rykov
- Department
of Semiconductors Physics and Nano-electronics, Peter the Great St. Petersburg Polytechnic University 195251 St. Petersburg, Russia
| | - Kyung-Eun You
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Andreas Heyden
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Jingguang G. Chen
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
12
|
Abstract
In recent years, the development of renewable energy alternatives to traditional fossil fuels has become one of the major challenges all over the world, due to the decline of fossil fuel reserves and their effect on global warming. Biodiesel has become a popular alternative energy source to reduce gas emissions compared to traditional fossil fuels. According to statistics, a nine-fold increase in global biofuel production between 2000 and 2020 was observed. However, its production generates a large amount of glycerol as a by-product, posing an environmental problem when disposed directly in landfills or by incineration. Therefore, low-value glycerol should be converted into high value-added derivatives. As glycerol carbonate is one of the most important derivatives of glycerol, this review aims to discuss the studies over the last ten years about glycerol carbonate synthetic methods, including the typical routes such as phosgene, esterification reaction, urea, oxidative and direct carbonylation as well as several rare synthetic procedures. At the same time, it summarizes the different catalytic reaction systems of each route comparing the advantages and disadvantages of various catalysts and evaluating their catalytic activity. Finally, the future development of glycerol carbonate synthesis is prospected from the point of view of development, technology research and industrialization.
Collapse
|
13
|
Lu S, Zhu L, Guo L, Li P, Xia X, Li C, Li F. Hydrogenation of furfural over Pd@ZIF-67 derived catalysts: direct hydrogenation and transfer hydrogenation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01565j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pd particles coated with ZIF-67 (Pd@ZIF-67) was prepared from the self-reduction of palladium acetate.
Collapse
Affiliation(s)
- Shiyu Lu
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Lingyi Zhu
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Lijun Guo
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Pei Li
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Xinxin Xia
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Cuiqin Li
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Feng Li
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|
14
|
Assessment on the Effect of Sulfuric Acid Concentration on Physicochemical Properties of Sulfated-Titania Catalyst and Glycerol Acetylation Performance. Catalysts 2021. [DOI: 10.3390/catal11121542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this research, a solid acid catalyst was synthesized to catalyse glycerol acetylation into acetins. The sulphated-titania catalysts were prepared via the wet impregnation method at different sulfuric acid concentrations (5%, 10%, 15%, and 20%) and denoted as 5SA, 10SA, 15SA, and 20SA, respectively. The synthesized catalysts were characterized using FTIR, XRD, TGA, BET, NH3-TPD, XRF, and SEM-EDX. The synthesized catalysts were tested on glycerol acetylation reaction at conditions: 0.5 g catalyst loading, 100–120 °C temperature, 1:6 glycerol/acetic acid molar ratios, and 2–4 h reaction time. The final product obtained was analysed using GC-FID. An increment in sulfuric acid concentration reduces the surface area, pore volume, and particles size. However, the increment has increased the number of active sites (Lewis acid) and strong acid strength. 15SA catalyst exhibited excellent glycerol conversion (>90%) and the highest selectivity of triacetin (42%). Besides sufficient surface area (1.9 m2 g−1) and good porosity structure, the great performance of the 15SA catalyst was attributed to its high acid site density (342.6 µmol g−1) and the high active site of metal oxide (95%).
Collapse
|
15
|
Catalytic conversion of CO2: Electrochemically to ethanol and thermochemically to cyclic carbonates using nanoporous polytriazine. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|