2
|
Qin X, Hakenjos JM, MacKenzie KR, Barzi M, Chavan H, Nyshadham P, Wang J, Jung SY, Guner JZ, Chen S, Guo L, Krishnamurthy P, Bissig KD, Palmer S, Matzuk MM, Li F. Metabolism of a Selective Serotonin and Norepinephrine Reuptake Inhibitor Duloxetine in Liver Microsomes and Mice. Drug Metab Dispos 2022; 50:128-139. [PMID: 34785568 PMCID: PMC8969139 DOI: 10.1124/dmd.121.000633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Duloxetine (DLX) is a dual serotonin and norepinephrine reuptake inhibitor, widely used for the treatment of major depressive disorder. Although DLX has shown good efficacy and safety, serious adverse effects (e.g., liver injury) have been reported. The mechanisms associated with DLX-induced toxicity remain elusive. Drug metabolism plays critical roles in drug safety and efficacy. However, the metabolic profile of DLX in mice is not available, although mice serve as commonly used animal models for mechanistic studies of drug-induced adverse effects. Our study revealed 39 DLX metabolites in human/mouse liver microsomes and mice. Of note, 13 metabolites are novel, including five N-acetyl cysteine adducts and one reduced glutathione (GSH) adduct associated with DLX. Additionally, the species differences of certain metabolites were observed between human and mouse liver microsomes. CYP1A2 and CYP2D6 are primary enzymes responsible for the formation of DLX metabolites in liver microsomes, including DLX-GSH adducts. In summary, a total of 39 DLX metabolites were identified, and species differences were noticed in vitro. The roles of CYP450s in DLX metabolite formation were also verified using human recombinant cytochrome P450 (P450) enzymes and corresponding chemical inhibitors. Further studies are warranted to address the exact role of DLX metabolism in its adverse effects in vitro (e.g., human primary hepatocytes) and in vivo (e.g., Cyp1a2-null mice). SIGNIFICANCE STATEMENT: This current study systematically investigated Duloxetine (DLX) metabolism and bioactivation in liver microsomes and mice. This study provided a global view of DLX metabolism and bioactivation in liver microsomes and mice, which are very valuable to further elucidate the mechanistic study of DLX-related adverse effects and drug-drug interaction from metabolic aspects.
Collapse
Affiliation(s)
- Xuan Qin
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Mercedes Barzi
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Hemantkumar Chavan
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Jin Wang
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Sung Yun Jung
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Joie Z Guner
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Si Chen
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Lei Guo
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Partha Krishnamurthy
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Karl-Dimiter Bissig
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Stephen Palmer
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology (X.Q., J.M.H., K.R.M., P.N., J.Z.G., S.P., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (K.R.M., F.L.), Department of Pharmacology & Chemical Biology (K.R.M., J.W., M.M.M., F.L.), and Department of Molecular & Cellular Biology (S.Y.J., K.-D.B., F.L.), Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Duke University Medical Center, Durham, North Carolina (M.B., K.-D.B.); Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (H.C., P.K.); and Division of Biochemical Toxicology, National Center for Toxicological Research/US Food and Drug Administration (FDA), Jefferson, Arkansas (S.C., L.G.)
| |
Collapse
|