1
|
Sang H, Lim J, Kim HI. Association of Comorbidity Duration with the Occurrence and Prognosis of Steatotic Liver Disease. Dig Dis Sci 2025; 70:386-398. [PMID: 39614023 DOI: 10.1007/s10620-024-08723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD) interacts with various comorbidities, impacting outcomes, yet little is known about the duration of comorbidities in SLD occurrence and mortality. We investigated this relationship, focusing on disease predictors and mortality rates. APPROACH Analyzing 2010 and 2015 Korea National Health and Nutrition Examination Survey data for patients aged ≥ 20, we categorized ten comorbidities (hypertension [HTN], diabetes mellitus [DM], dyslipidemia, stroke, myocardial infarction [MI], angina pectoris, asthma, chronic obstructive lung disease [COPD], chronic kidney disease [CKD], and depression) by duration. Association rule mining and logistic regression analyzed the association between SLD occurrence and comorbidity duration, while Cox regression assessed survival. RESULTS The analysis included 2,757 SLD and 9,505 non-SLD cases. Association rule mining showed that the shorter duration of DM and dyslipidemia and the longer duration of HTN comprised the top-ranked component for presence of SLD. DM with a duration ≤ 1 year showed higher risk of SLD than longer periods (odds ratio, 11.53), while the duration of cardiovascular disease, lung disease, or CKD was not significantly associated with the presence of SLD. In terms of prognosis, multivariate Cox regression showed that longer HTN and DM durations were significantly associated with increased hazard ratio (HR) beyond 10 years (HR, 2.22 and 2.11, respectively). Cardiovascular disease duration ≤ 5 years and lung disease duration > 5 years showed statistical significance (HR 2.49and 2.38, respectively). CONCLUSIONS Duration of comorbidities should be considered for comprehensive SLD risk stratification, for both the identification of SLD and the assessment of their prognosis after detection.
Collapse
Affiliation(s)
- Hyunji Sang
- Department of Endocrinology and Metabolism, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jihye Lim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Catholic University College of Medicine, Seoul, South Korea
| | - Ha Il Kim
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Guri, South Korea.
| |
Collapse
|
2
|
Cernea S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life (Basel) 2024; 14:272. [PMID: 38398781 PMCID: PMC10890557 DOI: 10.3390/life14020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The bidirectional relationship between type 2 diabetes and (non-alcoholic fatty liver disease) NAFLD is indicated by the higher prevalence and worse disease course of one condition in the presence of the other, but also by apparent beneficial effects observed in one, when the other is improved. This is partly explained by their belonging to a multisystemic disease that includes components of the metabolic syndrome and shared pathogenetic mechanisms. Throughout the progression of NAFLD to more advanced stages, complex systemic and local metabolic derangements are involved. During fibrogenesis, a significant metabolic reprogramming occurs in the hepatic stellate cells, hepatocytes, and immune cells, engaging carbohydrate and lipid pathways to support the high-energy-requiring processes. The natural history of NAFLD evolves in a variable and dynamic manner, probably due to the interaction of a variable number of modifiable (diet, physical exercise, microbiota composition, etc.) and non-modifiable (genetics, age, ethnicity, etc.) risk factors that may intervene concomitantly, or subsequently/intermittently in time. This may influence the risk (and rate) of fibrosis progression/regression. The recognition and control of the factors that determine a rapid progression of fibrosis (or its regression) are critical, as the fibrosis stages are associated with the risk of liver-related and all-cause mortality.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3, Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; or
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540136 Târgu Mureş, Romania
| |
Collapse
|
3
|
Kubota M, Yamamoto K, Yoshiyama S. Effect on Hemoglobin A1c (HbA1c) and Body Weight After Discontinuation of Tirzepatide, a Novel Glucose-Dependent Insulinotropic Peptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist: A Single-Center Case Series Study. Cureus 2023; 15:e46490. [PMID: 37800161 PMCID: PMC10550307 DOI: 10.7759/cureus.46490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction The purpose of this study was to examine changes in blood glucose levels and body weight after discontinuation of tirzepatide, a novel long-acting dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 receptor agonist (GLP-1 RA). Methods Nine subjects (five males, four females, age 54.3±5.4 years, body mass index 33.5±3.3 kg/m2) participating with type 2 diabetes in the SURPASS J-mono study were included. Subjects were randomized to tirzepatide 5 mg, 10 mg, 15 mg, or a dulaglutide 0.75 mg group. Fifty-two weeks after randomization, study drug administration was discontinued. To investigate progress after the end of administration, changes in hemoglobin A1c (HbA1c) and body weight were further examined two, four, and six months after discontinuation of the study drug. Results After fifty-two weeks, all tirzepatide groups had improved HbA1c and body weight compared with the dulaglutide group. At two, four, and six months after the end of study drug administration, re-elevation of HbA1c was observed in all groups. Furthermore, in the tirzepatide groups, dose-dependent weight regain was observed from an early stage. Conclusions Compared to dulaglutide, tirzepatide exhibited excellent blood-glucose-improving and weight-reducing effects. However, exacerbation of blood glucose and rebound of weight gain occurred relatively early after administration was ended. For type 2 diabetes patients who need weight loss and are prescribed tirzepatide, these findings suggest a necessity for continuous prescription or careful follow-up when stopping.
Collapse
Affiliation(s)
- Mitsunobu Kubota
- Department of Endocrinology and Diabetes, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, JPN
| | - Kazuki Yamamoto
- Department of Endocrinology and Diabetes, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, JPN
| | - Sayo Yoshiyama
- Department of Endocrinology and Diabetes, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, JPN
| |
Collapse
|
4
|
Fujihara K, Khin L, Murai K, Yamazaki Y, Tsuruoka K, Yagyuda N, Yamazaki K, Maegawa H, Tanaka S, Kodama S, Sone H. Incidence and predictors of remission and relapse of type 2 diabetes mellitus in Japan: Analysis of a nationwide patient registry. Diabetes Obes Metab 2023. [PMID: 37157909 DOI: 10.1111/dom.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
AIMS To determine the incidence of remission and 1-year relapse from remission and associated factors in patients with type 2 diabetes. MATERIALS AND METHODS A total of 48 320 Japanese patients with type 2 diabetes aged ≥18 years, with glycated haemoglobin (HbA1c) levels ≥48 mmol/mol (6.5%) and/or glucose-lowering drug prescription, were identified from databases of specialist clinics from 1989 and followed until September 2022. Remission was defined as HbA1c <48 mmol/mol at least 3 months after cessation of a glucose-lowering drug. Relapse was defined as failure to maintain remission for 1 year. Factors associated with remission and relapse were evaluated by logistic regression analysis. RESULTS The overall incidence of remissions per 1000 person-years was 10.5, and for those with HbA1c levels of 48 to 53 mmol/mol (6.5% to 6.9%), those taking no glucose-lowering drugs at baseline, and those with a ≥10% body mass index (BMI) reduction in 1 year, it was 27.8, 21.7 and 48.2, respectively. Shorter duration, lower baseline HbA1c, higher baseline BMI, higher BMI reduction at 1 year, and no glucose-lowering drugs at baseline were significantly associated with remission. Among 3677 persons with remission, approximately two-thirds (2490) relapsed within 1 year. Longer duration, lower BMI at baseline, and lower BMI reduction at 1 year were significantly associated with relapse. CONCLUSIONS The results showed that the incidence of remission and predictors of relapse, especially baseline BMI, might differ greatly between East Asian and Western populations. Furthermore, the relationships of BMI reduction with remission and relapse may be greater in East Asian than in Western populations, implying ethnic differences in returning from overt hyperglycaemia to nearly normal glucose levels.
Collapse
Affiliation(s)
- Kazuya Fujihara
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| | - Laymon Khin
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| | - Koshiro Murai
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| | - Yurie Yamazaki
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| | - Kahori Tsuruoka
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| | - Noriko Yagyuda
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| | | | - Hiroshi Maegawa
- Department of Internal Medicine, Shiga University of Medical Science, Shiga, Japan
- Yasu City Hospital, Shiga, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Kodama
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Niigata University Faculty of Medicine, Niigata, Japan
| |
Collapse
|
5
|
Lee WL, Wang PH, Yang ST, Liu CH, Chang WH, Lee FK. To do one and to get more: Part II. Diabetes and metabolic dysfunction-associated fatty liver diseases. J Chin Med Assoc 2022; 85:1109-1119. [PMID: 36279128 DOI: 10.1097/jcma.0000000000000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is characterized by inability of faulty pancreatic β-cells to secret a normal amount of insulin to maintain normal body consumption, and/or peripheral tissue has a decreased susceptibility to insulin, resulting in hyperglycemia and insulin resistance. Similar to other chronic systemic inflammatory diseases, DM is a result from dysregulated interactions between ethnic, genetic, epigenetic, immunoregulatory, hormonal, and environmental factors. Therefore, it is rational to suppose the concept as "To do one and to get more", while using antidiabetic agents (ADA), a main pharmacologic agent for the treatment of DM, can provide an extraglycemia effect on comorbidities or concomittent comorbidities to DM. In this review, based on the much strong correlation between DM and metabolic dysfunction-associated fatty liver diseases (MAFLD) shown by similar pathophysiological mechanisms and a high prevalence of DM in MAFLD and its vice versa (a high prevalence of MAFLD in DM), it is possible to use the strategy to target both diseases simultaneously. We focus on a new classification of ADA, such as glucagon-like peptide-1 receptor (GLP1R) agonist and sodium-glucose cotransporter-2 (SGLT-2) inhibitors to show the potential benefits of extraglycemic effect on MAFLD. We conclude that the management of DM patients, especially for those who need ADA as adjuvant therapy should include healthy lifestyle modification to overcome the metabolic syndrome, contributing to the urgent need of an effective weight-reduction strategy. GLP1R agonist is one of effective body weight-lowering medications, which may be a better choice for DM complicated with MAFLD or its-associated severe form as metabolic associated steatohepatitis (MASH), although the role of SGLT-2 inhibitors is also impressive. The prescription of these two classes of ADA may satisfy the concept "To do one and to get more", based on successful sugar-lowering effect for controlling DM and extraglycemia benefits of hepatoprotective activity in DM patients.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
| | - Szu-Ting Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chia-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wen-Hsun Chang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
6
|
Xin Z, Huang J, Cao Q, Wang J, He R, Hou T, Ding Y, Lu J, Xu M, Wang T, Zhao Z, Wang W, Ning G, Bi Y, Xu Y, Li M. Nonalcoholic fatty liver disease in relation to the remission and progression along the glycemic continuum. J Diabetes 2022; 14:606-619. [PMID: 36163589 PMCID: PMC9512772 DOI: 10.1111/1753-0407.13314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The study aimed to explore the associations of nonalcoholic fatty liver disease (NAFLD) with the remission and progression along the glycemic continuum. METHODS This prospective cohort study was performed among the general population in 2010-2015. NAFLD was defined as ultrasound-detected hepatic steatosis with absence of excessive alcohol consumption and other hepatic diseases. Remission of type 2 diabetes referred to glycated hemoglobin <6.5% without hypoglycemic agents for ≥3 months. Prediabetes remission referred to normalization of blood glucose. Multivariable logistic analysis was applied to identify the risk of glycemic metabolic transition. RESULTS During a median follow-up of 4.3 years, participants with NAFLD had a significantly higher risk of progressing from normal glucose tolerance to diabetes (3.36 [1.60-7.07]) and lower likelihood of diabetes remission (0.48 [0.30-0.78]). Associations in participants with overweight or obesity and higher probability of hepatic fibrosis remained consistent. Results related to the effect of NAFLD on the specific glucose parameters were generally in line with the changes of glycemic status. NAFLD improvement decreased the risk of prediabetes progressing to diabetes (0.50 [0.32-0.80]) and increased the probability of prediabetes remission (2.67 [1.49-4.79]). NAFLD tended to show the most significant association with glycemic progression and decreased the likelihood in remission of prediabetes and diabetes. CONCLUSIONS Presence of NAFLD increased risk of glycemic progression and decreased likelihood of remission. NAFLD improvement mitigated glycemic deterioration, whereas NAFLD progression impeded the chance of remission. The results emphasized joint management of NAFLD and diabetes and further focused on liver-specific subgroups of diabetes to tailor early intervention.
Collapse
Affiliation(s)
- Zhuojun Xin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaojiao Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiuyu Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jialu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ruixin He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Ding
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical GenomicsRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Yamazaki H, Tauchi S, Machann J, Haueise T, Yamamoto Y, Dohke M, Hanawa N, Kodama Y, Katanuma A, Stefan N, Fritsche A, Birkenfeld AL, Wagner R, Heni M. Fat Distribution Patterns and Future Type 2 Diabetes. Diabetes 2022; 71:1937-1945. [PMID: 35724270 DOI: 10.2337/db22-0315] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022]
Abstract
Fat accumulation in the liver, pancreas, skeletal muscle, and visceral bed relates to type 2 diabetes (T2D). However, the distribution of fat among these compartments is heterogenous and whether specific distribution patterns indicate high T2D risk is unclear. We therefore investigated fat distribution patterns and their link to future T2D. From 2,168 individuals without diabetes who underwent computed tomography in Japan, this case-cohort study included 658 randomly selected individuals and 146 incident cases of T2D over 6 years of follow-up. Using data-driven analysis (k-means) based on fat content in the liver, pancreas, muscle, and visceral bed, we identified four fat distribution clusters: hepatic steatosis, pancreatic steatosis, trunk myosteatosis, and steatopenia. In comparisons with the steatopenia cluster, the adjusted hazard ratios for incident T2D were 4.02 (95% CI 2.27-7.12) for the hepatic steatosis cluster, 3.38 (1.65-6.91) for the pancreatic steatosis cluster, and 1.95 (1.07-3.54) for the trunk myosteatosis cluster. The clusters were replicated in 319 German individuals without diabetes who underwent MRI and metabolic phenotyping. The distribution of the glucose area under the curve across the four clusters found in Germany was similar to the distribution of T2D risk across the four clusters in Japan. Insulin sensitivity and insulin secretion differed across the four clusters. Thus, we identified patterns of fat distribution with different T2D risks presumably due to differences in insulin sensitivity and insulin secretion.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Tauchi
- Department of Radiology, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
| | - Tobias Haueise
- Section on Experimental Radiology, Department of Radiology, Eberhard-Karls University, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Dohke
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Yoshihisa Kodama
- Department of Radiology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Norbert Stefan
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard-Karls University, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard-Karls University, Tübingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard-Karls University, Tübingen, Germany
| | - Róbert Wagner
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard-Karls University, Tübingen, Germany
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine, Eberhard-Karls University, Tübingen, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|
8
|
Yamazaki H, Wang J, Yamamoto Y. Reply. Clin Gastroenterol Hepatol 2022; 20:472. [PMID: 33819665 DOI: 10.1016/j.cgh.2021.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Hajime Yamazaki
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jui Wang
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Ng A. Fatty Liver and Type 2 Diabetes Mellitus Regression: The Weight, the Fat, and the Alcohol. Clin Gastroenterol Hepatol 2022; 20:471. [PMID: 33716143 DOI: 10.1016/j.cgh.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander Ng
- University College London, London, United Kingdom
| |
Collapse
|
10
|
Martínez-Urbistondo D, San-Cristóbal R, Villares P, Martínez-González MÁ, Babio N, Corella D, del Val JL, Ordovás JM, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem JL, Bueno-Cavanillas A, Tur JA, Marcos A, Pintó X, Delgado-Rodríguez M, Matía-Martín P, Vidal J, Vázquez C, Ros E, Bullón Vela MV, Palau A, Sorli JV, Masagué M, Abete I, Moreno-Rodríguez A, Candela-García I, Konieczna J, García-Ríos A, Juárez OL, Portolés O, Martín P, Goday A, Zulet MÁ, Vaquero-Luna J, Orea MDCS, Megías I, Baltasar E, Martínez JA, Daimiel L. Role of NAFLD on the Health Related QoL Response to Lifestyle in Patients With Metabolic Syndrome: The PREDIMED Plus Cohort. Front Endocrinol (Lausanne) 2022; 13:868795. [PMID: 35846291 PMCID: PMC9276971 DOI: 10.3389/fendo.2022.868795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To evaluate the effect of Non-alcoholic fatty liver disease (NAFLD) status in the impact of lifestyle over Health-related quality of life (HRQoL) in patients with metabolic syndrome (MetS). METHODS Baseline and 1 year follow up data from the PREDIMED-plus cohort (men and women, 55-75 years old with overweight/obesity and MetS) were studied. Adherence to an energy-restricted Mediterranean Diet (er-MeDiet) and Physical Activity (PA) were assessed with a validated screeners. Hepatic steatosis index (HSI) was implemented to evaluate NAFLD while the SF-36 questionnaire provided HRQoL evaluation. Statistical analyses were performed to evaluate the influence of baseline NAFLD on HRQoL as affected by lifestyle during 1 year of follow up. RESULTS Data from 5205 patients with mean age of 65 years and a 48% of female participants. Adjusted linear multivariate mixed regression models showed that patients with lower probability of NAFLD (HSI < 36 points) were more responsive to er-MeDiet (β 0.64 vs β 0.05 per er-MeDiet adherence point, p< 0.01) and PA (β 0.05 vs β 0.01 per MET-h/week, p = 0.001) than those with high probability for NAFLD in terms Physical SF-36 summary in the 1 year follow up. 10 points of er-MeDiet adherence and 50 MET-h/week were thresholds for a beneficial effect of lifestyle on HRQoL physical domain in patients with lower probability of NAFLD. CONCLUSION The evaluation of NAFLD by the HSI index in patients with MetS might identify subjects with different prospective sensitivity to lifestyle changes in terms of physical HRQoL (http://www.isrctn.com/ISRCTN89898870).
Collapse
Affiliation(s)
- Diego Martínez-Urbistondo
- Internal Medicine Department, Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
- *Correspondence: Diego Martínez-Urbistondo,
| | - Rodrigo San-Cristóbal
- Cardiometabolic Nutrition Group, Precision Nutrition and Cardiometabolic Health Program, Instituto Madrileño de Estudios Avanzados (IMDEA) Food, Centro de Excelencia en Investigación (CEI) Universidad Autónoma de Madrid (UAM) + Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Paula Villares
- Internal Medicine Department, Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Nancy Babio
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus. Human Nutrition unit, Reus, Spain
| | - Dolores Corella
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - José Luis del Val
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - José Ma Ordovás
- Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program. Instituto Madrileño de Estudios Avanzados (IMDEA) Food, Centro de Excelencia en Investigación (CEI) Universidad Autónoma de Madrid (UAM) + Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture (JM_USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Ángel M. Alonso-Gómez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nursing, School of Health Sciences, University of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Jesús Vioque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante. Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dora Romaguera
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR). Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain
| | - José López-Miranda
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Ramon Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Internal Medicine, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J. Tinahones
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, University of Málaga, Málaga, Spain
| | - José Lapetra
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - J. Luís Serra-Majem
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Institute of Biomedical and Health Sciences Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), University of Las Palmas de Gran Canaria, Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain
| | - Aurora Bueno-Cavanillas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Josep A. Tur
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Spain
| | - Alba Marcos
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Xavier Pintó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Delgado-Rodríguez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Ciencias de la Salud, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Josep Vidal
- Biomedical Research Centre for Diabetes and Metabolic Diseases Network (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Endocrinology and Nutrition Service, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Clotilde Vázquez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas IISFJD. University Autónoma, Madrid, Spain
| | - Emilio Ros
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Endocrinology and Nutrition Service, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - María Vanessa Bullón Vela
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni Palau
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus. Human Nutrition unit, Reus, Spain
| | - Jose V. Sorli
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Marta Masagué
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Itziar Abete
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - Anai Moreno-Rodríguez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Jadwiga Konieczna
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR). Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases (HUSE), Palma de Mallorca, Spain
| | - Antonio García-Ríos
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Oscar Lecea Juárez
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Olga Portolés
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Paco Martín
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus. Human Nutrition unit, Reus, Spain
| | - Albert Goday
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Ángeles Zulet
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - Jessica Vaquero-Luna
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - María del Carmen Sayón Orea
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Megías
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus. Human Nutrition unit, Reus, Spain
| | - Enric Baltasar
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - J. Alfredo Martínez
- Cardiometabolic Nutrition Group, Precision Nutrition and Cardiometabolic Health Program, Instituto Madrileño de Estudios Avanzados (IMDEA) Food, Centro de Excelencia en Investigación (CEI) Universidad Autónoma de Madrid (UAM) + Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group. Precision Nutrition and Obesity Program. Instituto Madrileño de Estudios Avanzados (IMDEA) Food, Centro de Excelencia en Investigación (CEI) Universidad Autónoma de Madrid (UAM) + Centro Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Narisada A, Shibata E, Hasegawa T, Masamura N, Taneda C, Suzuki K. Sex differences in the association between fatty liver and type 2 diabetes incidence in non-obese Japanese: A retrospective cohort study. J Diabetes Investig 2021; 12:1480-1489. [PMID: 33411970 PMCID: PMC8354510 DOI: 10.1111/jdi.13496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Aims/Introduction Asians develop type 2 diabetes at a lower body mass index (BMI) compared with other races, which is partly because of Asian‐specific fat depots. Sex plays a role in fat deposition, regardless of race. This retrospective cohort study aimed to investigate the association among fatty liver, sex and type 2 diabetes in non‐obese Japanese. Materials and Methods The participants in this study (13,596 men and 6,037 women) were aged 30–64 years, and had undergone health checkups between 2013 and 2015, in Aichi, Japan. Baseline BMI was categorized as follows: <18.5, 18.5–19.9, 20–22.9, 23–24.9, 25–27.4 and ≥27.5 kg/m2. Fatty liver was diagnosed by abdominal ultrasonography. The joint effect of BMI and fatty liver on the incidence of type 2 diabetes was assessed, stratified by sex. Results During follow up, 738 men and 138 women developed type 2 diabetes. Compared with the BMI of 20–22.9 kg/m2 without fatty liver group, the BMI of 20–22.9 kg/m2 with fatty liver was associated with a higher risk of type 2 diabetes in men, but not in women. Furthermore, men with a BMI of 23–24.9 and 25–27.4 kg/m2 without fatty liver had no significant type 2 diabetes risk, whereas women with a BMI of 23–24.9 and 25–27.4 kg/m2, regardless of fatty liver, had an increased risk. Conclusions These results suggest the association between fatty liver and type 2 diabetes in non‐obese Asians is different by sex; fatty liver increases diabetes risk among male, not female, non‐obese Asians.
Collapse
Affiliation(s)
- Akihiko Narisada
- Institute for Occupational Health Science, Aichi Medical University, Nagakute, Japan
| | - Eiji Shibata
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tomomi Hasegawa
- Institute of Physical Fitness, Sports Medicine and Rehabilitation, Aichi Medical University, Nagakute, Japan
| | | | | | - Kohta Suzuki
- Institute for Occupational Health Science, Aichi Medical University, Nagakute, Japan.,Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|