1
|
Feng G, Mózes FE, Ji D, Treeprasertsuk S, Okanoue T, Shima T, Liang H, Tsochatzis E, Chen J, Schattenberg JM, Labenz C, Mahadeva S, Chan WK, Chi X, Delamarre A, de Lédinghen V, Petta S, Bugianesi E, Hagström H, Boursier J, Calleja JL, Goh GBB, Gallego-Durán R, Sanyal AJ, Fan JG, Castéra L, Lai M, Harrison SA, Romero-Gomez M, Kim SU, Zhu Y, Ooi G, Shi J, Yoneda M, Nakajima A, Zhang J, Lupsor-Platon M, Zhong B, Cobbold JFL, Ye CY, Eddowes PJ, Newsome P, Li J, George J, He F, Song MJ, Tang H, Fan Y, Jia J, Xu L, Lin S, Li Y, Lu Z, Nan Y, Niu J, Yan X, Zhou Y, Liu C, Deng H, Ye Q, Zeng QL, Li L, Wang J, Yang S, Lin H, Lee HW, Yip TCF, Fournier-Poizat C, Wong GLH, Pennisi G, Armandi A, Liu WY, Shang Y, de Saint-Loup M, Llop E, Teh KKJ, Lara-Romero C, Asgharpour A, Mahgoub S, Chan MSW, Canivet CM, Ji F, Xin Y, Chai J, Dong Z, Targher G, Byrne CD, He N, Mi M, Ye F, Wong VWS, Pavlides M, Zheng MH. acFibroMASH Index for the Diagnosis of Fibrotic MASH and Prediction of Liver-related Events: An International Multicenter Study. Clin Gastroenterol Hepatol 2025; 23:785-796. [PMID: 39362618 DOI: 10.1016/j.cgh.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) and fibrotic MASH are significant health challenges. This multi-national study aimed to validate the acMASH index (including serum creatinine and aspartate aminotransferase concentrations) for MASH diagnosis and develop a new index (acFibroMASH) for non-invasively identifying fibrotic MASH and exploring its predictive value for liver-related events (LREs). METHODS We analyzed data from 3004 individuals with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) across 29 Chinese and 9 international cohorts to validate the acMASH index and develop the acFibroMASH index. Additionally, we utilized the independent external data from a multi-national cohort of 9034 patients with MASLD to examine associations between the acFibroMASH index and the risk of LREs. RESULTS In the pooled global cohort, the acMASH index identified MASH with an area under the receiver operating characteristic curve (AUROC) of 0.802 (95% confidence interval [CI], 0.786-0.818). The acFibroMASH index (including the acMASH index plus liver stiffness measurement) accurately identified fibrotic MASH with an AUROC of 0.808 in the derivation cohort and 0.800 in the validation cohort. Notably, the AUROC for the acFibroMASH index was 0.835 (95% CI, 0.786-0.882), superior to that of the FAST score at 0.750 (95% CI, 0.693-0.800; P < .01) in predicting the 5-year risk of LREs. Patients with acFibroMASH >0.39 had a higher risk of LREs than those with acFibroMASH <0.15 (adjusted hazard ratio, 11.23; 95% CI, 3.98-31.66). CONCLUSIONS This multi-ethnic study validates the acMASH index as a reliable, noninvasive test for identifying MASH. The newly proposed acFibroMASH index is a reliable test for identifying fibrotic MASH and predicting the risk of LREs.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China; Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ferenc E Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dong Ji
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross, Bangkok, Thailand
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Huiqing Liang
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Emmanuel Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, United Kingdom
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jörn M Schattenberg
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Rhineland-Palatinate, Germany; Department of Medicine II, University Medical Center Homburg, Homburg and University of the Saarland, Saarbrücken, Germany
| | - Christian Labenz
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Rhineland-Palatinate, Germany; Department of Medicine II, University Medical Center Homburg, Homburg and University of the Saarland, Saarbrücken, Germany
| | - Sanjiv Mahadeva
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia
| | - Wah Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia
| | - Xiaoling Chi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Adèle Delamarre
- Centre d'Investigation de la Fibrose Hépatique, Hôpital Haut-Lévêque, Bordeaux University Hospital, Pessac, and INSERM U1312, Bordeaux University, Bordeaux, France
| | - Victor de Lédinghen
- Centre d'Investigation de la Fibrose Hépatique, Hôpital Haut-Lévêque, Bordeaux University Hospital, Pessac, and INSERM U1312, Bordeaux University, Bordeaux, France
| | - Salvatore Petta
- Sezione di Gastroenterologia, Di.Bi.M.I.S., University of Palermo, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jérôme Boursier
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France; HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - José Luis Calleja
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Rocio Gallego-Durán
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Arun J Sanyal
- Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Department of Internal Medicine, VCU School of Medicine, Richmond, Virginia
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Laurent Castéra
- Université Paris Cité, UMR1149 (CRI), INSERM, Paris, France; Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), Clichy, France
| | - Michelle Lai
- Division of Gastroenterology & Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Pinnacle Clinical Research, San Antonio, Texas
| | - Manuel Romero-Gomez
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Seung Up Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yongfen Zhu
- Department of Hepatology and Infection, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, China
| | - Geraldine Ooi
- Centre for Obesity Research and Education, Department of Surgery, Monash University, Melbourne, Australia
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Monica Lupsor-Platon
- Department of Medical Imaging, Iuliu Hatieganu, University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. Octavian Fodor," Cluj-Napoca, Romania
| | - Bihui Zhong
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeremy F L Cobbold
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
| | - Chun-Yan Ye
- Institute for the Study of Liver Diseases, The Third People's Hospital of Changzhou, Changzhou, Jiangsu Province, China
| | - Peter J Eddowes
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Philip Newsome
- National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, United Kingdom; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, New South Wales, Australia
| | - Fangping He
- Department of Hepatobiliary Pancreatic Surgery, Eighth Hospital Affiliated to SunYat-sen University, Futian, Guangdong Province, China
| | - Myeong Jun Song
- Division of Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liang Xu
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Su Lin
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhonghua Lu
- Clinical Laboratory Center, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital, Shijiazhuang, China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Xuebing Yan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Deng
- Department of lnfectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Ye
- Department of Hepatology of The Third Central Hospital of Tianjin, Tianjin, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Li
- Department of lnfectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Wang
- Department of Hepatobiliary Diseases, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Song Yang
- Center of Hepatology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huapeng Lin
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Grazia Pennisi
- Sezione di Gastroenterologia, Di.Bi.M.I.S., University of Palermo, Italy
| | - Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Wen-Yue Liu
- Department of Endocrinology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Shang
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marc de Saint-Loup
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | - Elba Llop
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Kevin Kim Jun Teh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Carmen Lara-Romero
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Amon Asgharpour
- Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Department of Internal Medicine, VCU School of Medicine, Richmond, Virginia
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, United Kingdom
| | | | - Clemence M Canivet
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France; HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongning Xin
- Department of Infectious Diseases, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jin Chai
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Na He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Man Mi
- Xi'an Medical University, Xi'an, China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| | - Michael Pavlides
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, United Kingdom.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Askeland A, Rasmussen RW, Gjela M, Frøkjær JB, Højlund K, Mellergaard M, Handberg A. Non-invasive liver fibrosis markers are increased in obese individuals with non-alcoholic fatty liver disease and the metabolic syndrome. Sci Rep 2025; 15:10652. [PMID: 40148373 PMCID: PMC11950363 DOI: 10.1038/s41598-025-85508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 03/29/2025] Open
Abstract
The need for early non-invasive diagnostic tools for chronic liver fibrosis is growing, particularly in individuals with obesity, non-alcoholic fatty liver disease (NAFLD), and the metabolic syndrome (MetS) since prevalence of these conditions is increasing. This case-control study compared non-invasive liver fibrosis markers in obesity with NAFLD and MetS (NAFLD-MetS, n = 33), in obese (n = 28) and lean (n = 27) control groups. We used MRI (T1 relaxation times (T1) and liver stiffness), circulating biomarkers (CK18, PIIINP, and TIMP1), and algorithms (FIB-4 index, Forns score, FNI, and MACK3 score) to assess their potential in predicting liver fibrosis risk. We found that T1 (892 ± 81 ms vs. 818 ± 64 ms, p < 0.001), FNI (15 ± 12% vs. 9 ± 7%, p = 0.018), CK18 (166 ± 110 U/L vs. 113 ± 41 U/L, p = 0.019), and MACK3 (0.18 ± 0.15 vs. 0.05 ± 0.04, p < 0.001) were higher in the NAFLD-MetS group compared with the obese control group. Moreover, correlations were found between CK18 and FNI (r = 0.69, p < 0.001), CK18 and T1 (r = 0.41, p < 0.001), FNI and T1 (r = 0.33, p = 0.006), MACK3 and FNI (r = 0.79, p < 0.001), and MACK3 and T1 (r = 0.50, p < 0.001). We show that liver fibrosis markers are increased in obese individuals with NAFLD and MetS without clinical signs of liver fibrosis. More studies are needed to validate the use of these non-invasive biomarkers for early identification of liver fibrosis risk.
Collapse
Affiliation(s)
- Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Mimoza Gjela
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Wu Y, Han Y, Zheng L, Liu L, Li W, Zhang F. Validation of the diagnostic accuracy of the acFibroMASH index for at-risk MASH in patients with metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol 2025; 25:196. [PMID: 40128689 PMCID: PMC11931867 DOI: 10.1186/s12876-025-03781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE The objective of this study was to validate the diagnostic accuracy of the acFibroMASH index in a population of metabolic dysfunction-associated steatotic liver disease (MASLD) patients with at-risk metabolic dysfunction-associated steatohepatitis (MASH) and to compare it with other scoring systems. METHODS 394 patients with biopsy-proven MASLD were retrospectively enrolled. The patients were divided into the at-risk MASH (NAFLD activity score ≥ 4 and significant fibrosis) group (n = 103) and the non-at-risk MASH group (n = 291). The diagnostic performance of the acFibroMASH index was compared to that of fibroScan-aspartate aminotransferase (FAST) and other noninvasive fibrosis scores by plotting the receiver operating characteristic curve (ROC), including the area under the curve (AUC), sensitivity, and specificity. Cut-offs of the acFibroMASH index for sensitivity (≥ 0.90) and specificity (≥ 0.90) were obtained in our cohort. RESULTS The AUC of the acFibroMASH index in assessing at-risk MASH was 0.780, while the AUC of FAST was 0.770. The comparison of acFibroMASH with FAST showed no significant difference (P = 0.542). When the cut-off value for acFibroMASH was < 0.15, 95.5% of at-risk MASH patients could be excluded in 89 patients correctly. Conversely, when the cut-off value was set at > 0.39, 49.3% of at-risk MASH patients could be diagnosed in 140 patients correctly. When the NPV was set at 0.900, the critical value for exclusion was determined to be 0.23, with a sensitivity of 0.835 and a specificity of 0.526. CONCLUSION This study validated the efficacy of the acFibroMASH index in predicting at-risk MASH in a population of MASLD patients, demonstrating comparable performance to that of the FAST. The acFibroMASH index may provide a valuable clinical basis for screening and identifying at-risk MASH in primary care settings.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Pathology, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Yan Han
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Liming Zheng
- Clinical Laboratory, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213001, China.
| | - Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213001, China.
| |
Collapse
|
4
|
Boursier J, Hervé H, Roux M, Abdelmalek MF, Francque SM, Broqua P, Junien JL, Abitbol JL, Huot-Marchand P, Dzen L, Cooreman MP, Patel S. Biomarkers of Histological Response in Lanifibranor-treated Patients With Metabolic Dysfunction-associated Steatohepatitis. Clin Gastroenterol Hepatol 2025:S1542-3565(25)00204-6. [PMID: 40107637 DOI: 10.1016/j.cgh.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/01/2024] [Accepted: 12/23/2024] [Indexed: 03/22/2025]
Abstract
BACKGROUND & AIMS Lanifibranor, a pan-peroxisome proliferator-activated receptor agonist, has demonstrated therapeutic efficacy on metabolic dysfunction-associated steatohepatitis (MASH) resolution and fibrosis improvement in the Phase IIb NATIVE study. The histologic endpoints of MASH resolution and fibrosis improvement (E1), MASH resolution without worsening of fibrosis (E2), and fibrosis improvement without worsening of MASH (E3) were investigated with the aim of identifying biological signatures of E1, E2, and E3 responders based on serum biomarkers in patients treated with lanifibranor. METHODS NATIVE evaluated lanifibranor 800 and 1200 mg daily vs placebo in patients with non-cirrhotic MASH treated over 24 weeks. Liver biopsy was obtained at baseline and the end of treatment. Patients receiving lanifibranor were pooled, and those with liver biopsies were selected (n = 142). A panel of 65 biomarkers were evaluated by assessing baseline and absolute as well as relative changes at the end of treatment. RESULTS The biomarkers included in E1 score (baseline adiponectin and ferritin; delta of matrix metalloproteinase 9 and transferrin), E2 score (baseline cytokeratin 18 Fragment M65; delta of hyaluronic acid, fructosamine, and alanine aminotransferase), and E3 score (baseline cytokeratin 18 Fragment M65 and gamma-glutamyl transferase; delta of aspartate aminotransferase, insulin, and urea) represented metabolic, apoptotic, and fibrosis aspects of the disease. These signatures provided good accuracy for the noninvasive identification of histologic response under lanifibranor with area under the receiver operating characteristic curve at 0.81 ± 0.08 for E1 score, 0.80 ± 0.08 for E2 score, and 0.81 ± 0.08 for E3 score. CONCLUSIONS Results from this analysis show evidence that baseline values and changes in selected serum biomarkers can aid in predicting histologic response in MASH under lanifibranor treatment. These findings support utilizing a similar approach in a larger sample size (NATiV3, NCT03008070).
Collapse
Affiliation(s)
- Jérôme Boursier
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France; Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France.
| | - Hugo Hervé
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Marine Roux
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Wilrijk, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
6
|
Lam SM, Wang Z, Song JW, Shi Y, Liu WY, Wan LY, Duan K, Chua GH, Zhou Y, Wang G, Huang X, Wang Y, Wang FS, Zheng MH, Shui G. Non-invasive lipid panel of MASLD fibrosis transition underscores the role of lipoprotein sulfatides in hepatic immunomodulation. Cell Metab 2025; 37:69-86.e7. [PMID: 39500328 DOI: 10.1016/j.cmet.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025]
Abstract
There exists a pressing need for a non-invasive panel that differentiates mild fibrosis from non-fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). In this work, we applied quantitative lipidomics and sterolomics on sera from the PERSONS cohort with biopsy-based histological assessment of liver pathology. We trained a lasso regression model using quantitative omics data and clinical variables, deriving a combinatorial panel of lipids and clinical indices that differentiates mild fibrosis (>F1, n = 324) from non-fibrosis (F0, n = 195), with an area under receiver operating characteristic curve (AUROC) at 0.775 (95% confidence interval [CI]: 0.735-0.816). Circulating sulfatides (SLs) emerged as central lipids distinctly associated with fibrosis pathogenesis in MASLD. Lipidomics analysis of lipoprotein fractions revealed a redistribution of circulating SLs from high-density lipoproteins (HDLs) onto low-density lipoproteins (LDLs) in MASLD fibrosis. We further verified that patient LDLs with reduced SL content triggered a smaller activation of type II natural killer T lymphocytes, compared with control LDLs. Our results suggest that hepatic crosstalk with systemic immunity mediated by lipoprotein metabolism underlies fibrosis progression at early-stage MASLD.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Yue Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-Yu Wan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Kaibo Duan
- Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Yingjuan Zhou
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China; Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction-associated steatotic liver disease, a hepatic expression of metabolic syndrome - current insights and future directions. Clin Diabetes Endocrinol 2024; 10:39. [PMID: 39617908 PMCID: PMC11610122 DOI: 10.1186/s40842-024-00187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing health concern and the risk of its development is connected with the increasing prevalence of metabolic syndrome (MetS) which occurs as a result of some complex obesity-induced metabolic changes. It is a common chronic liver disease characterized by excessive fat accumulation in the liver, the tendency to progress to more severe forms, and a corresponding increase in morbidity and mortality. Thus, effectively addressing the rising burden of the disease requires a thorough understanding of its complex interrelationship with obesity and MetS. MAIN BODY MASLD results from complex interactions involving obesity, insulin resistance, and dyslipidaemia, leading to hepatic lipid accumulation, and is influenced by several genetic and environmental factors such as diet and gut microbiota dysbiosis. It has extensive metabolic and non-metabolic implications, including links to MetS components like hyperglycaemia, hypertension, and dyslipidaemia, and progresses to significant liver damage and other extra-hepatic risks like cardiovascular disease and certain cancers. Diagnosis often relies on imaging and histology, with non-invasive methods preferred over liver biopsies. Emerging biomarkers and OMIC technologies offer improved diagnostic capabilities but face practical challenges. Advancements in artificial intelligence (AI), lifestyle interventions, and pharmacological treatments show promise, with future efforts focusing on precision medicine and novel diagnostic tools to improve patient outcome. CONCLUSION Understanding the pathogenic mechanisms underlying the development of MASLD within the context of metabolic syndrome (MetS) is essential for identifying potential therapeutic targets. Advancements in non-invasive diagnostic tools and novel pharmacological treatments, hold promise for improving the management of MASLD. Future research should focus on precision medicine and innovative therapies to effectively address the disease and its consequences.
Collapse
Affiliation(s)
- Bruno Basil
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria.
- Department of Nursing, Central Washington College, Enugu, Nigeria.
| | - Blessing K Myke-Mbata
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria
- Department of Chemical Pathology, Bingham University, Jos, Nigeria
| | - Onyinye E Eze
- Department of Nursing, Central Washington College, Enugu, Nigeria
- Department of Haematology and Blood Transfusion, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
8
|
Wan Q, Liu X, Xu J, Zhao R, Yang S, Feng J, Cao Z, Li J, He X, Chen H, Ye J, Chen H, Chen Y. Body Composition and Progression of Biopsy-Proven Non-Alcoholic Fatty Liver Disease in Patients With Obesity. J Cachexia Sarcopenia Muscle 2024; 15:2608-2617. [PMID: 39389917 PMCID: PMC11634503 DOI: 10.1002/jcsm.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Obesity is a significant risk factor for the progression of non-alcoholic fatty liver disease (NAFLD). However, a convenient and efficacious non-invasive test for monitoring NAFLD progression in patients with obesity is currently lacking. This study aims to investigate the associations between CT-based body composition and the progression of biopsy-proven NAFLD in patients with obesity. METHODS Liver biopsy was conducted in patients with obesity, and the progression of NAFLD was evaluated by the NAFLD activity score (NAS). Body composition was assessed through abdominal computed tomography (CT) scans. RESULTS A total of 602 patients with an average age of 31.65 (±9.33) years old were included, comprising 217 male patients and 385 female patients. The wall skeletal muscle index (SMI), total SMI, and visceral fat index (VFI) were positively correlated with NAS in both male and female patients. Multivariate regression analysis demonstrated significant associations between high liver steatosis and wall SMI (HR: 1.60, 95% CI: 1.12 to 2.30), total SMI (HR: 1.50, 95% CI: 1.02 to 2.08), VSI (HR: 2.16, 95% CI: 1.48 to 3.14), visceral fat to muscle ratio (HR: 1.51, 95% CI: 1.05 to 2.18), and visceral to subcutaneous fat ratio (HR: 1.51, 95% CI: 1.07 to 2.12). Non-alcoholic steatohepatitis (NASH) was significantly associated with wall SMI (HR: 1.52, 95% CI: 1.06 to 2.19) and VSI (HR: 1.50, 95% CI: 1.03 to 2.17). Liver fibrosis ≥ F2 was significantly associated with psoas muscle index (HR: 0.64, 95% CI: 0.44 to 0.93) and psoas skeletal muscle density (HR: 0.61, 95% CI: 0.41 to 0.89). CONCLUSIONS Our study suggested that certain CT-based body composition indicators, notably high VFI, were significantly associated with the progression of NAFLD in patients with obesity. Great attentions and timely managements should be given to these patients with body composition characteristics associated with the risk of NAFLD progression.
Collapse
Affiliation(s)
- Qianyi Wan
- Department of General Surgery, Division of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduChina
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xingzhu Liu
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Jinghao Xu
- Department of General Surgery, Division of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduChina
| | - Rui Zhao
- Department of General Surgery, Division of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduChina
| | - Shiqin Yang
- West China School of MedicineSichuan UniversityChengduChina
| | - Jianrong Feng
- West China School of MedicineSichuan UniversityChengduChina
| | - Zhan Cao
- West China School of MedicineSichuan UniversityChengduChina
| | - Jingru Li
- West China School of MedicineSichuan UniversityChengduChina
| | - Xiaopeng He
- West China School of MedicineSichuan UniversityChengduChina
| | - Haiou Chen
- West China School of MedicineSichuan UniversityChengduChina
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Jinbao Ye
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Haiyang Chen
- West China School of MedicineSichuan UniversityChengduChina
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics and State key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yi Chen
- Department of General Surgery, Division of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduChina
| |
Collapse
|
9
|
Malandris K, Arampidis D, Mainou M, Papadopoulos N, Karagiannis T, Nayfeh T, Liakos A, Sinakos E, Tsapas A, Bekiari E. FibroScan-AST score for diagnosing fibrotic MASH: A systematic review and meta-analysis of diagnostic test accuracy studies. J Gastroenterol Hepatol 2024; 39:2582-2591. [PMID: 39394945 PMCID: PMC11660209 DOI: 10.1111/jgh.16770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND AND AIM Following the approval of the first agent for the management of metabolic dysfunction-associated steatohepatitis (MASH), identification of patients with fibrotic MASH (MASH with NAS ≥ 4 and fibrosis stage ≥ 2) is crucial. We assessed the performance of FibroScan-aspartate aminotransferase (AST) score (FAST) for ruling in/out fibrotic MASH. METHODS We searched Medline, Cochrane Library, Web of Science, Scopus, and gray literature sources up to January 11, 2024. Studies were eligible if they assessed the accuracy of FAST score for the detection of fibrotic MASH using biopsy as the reference standard at previously reported thresholds (FAST ≥ 0.67 for ruling-in and ≤ 0.35 for ruling-out fibrotic MASH). We calculated pooled sensitivity and specificity estimates for FAST thresholds alongside 95% confidence intervals following bivariate random- effects models. We assessed the certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation framework. RESULTS We included 16 studies with 8838 participants. A FAST score ≥ 0.67 yielded a pooled specificity of 0.87 (0.82-0.90) while a FAST score ≤ 0.35 yielded a summary sensitivity of 0.88 (0.83-0.91). At a prevalence of 30%, the positive predictive value for ruling-in fibrotic MASH was 60% while the negative predictive value for ruling-out the target condition was 91%. AST levels, cirrhosis prevalence, and number of pathologists reviewing biopsies were sources of heterogeneity among studies. The certainty of evidence was low to very low. CONCLUSIONS FAST score can be used as a triage test for ruling out fibrotic MASH. Nevertheless, its low positive predictive value necessitates sequential testing for ruling-in fibrotic MASH.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Clinical Research and Evidence‐Based Medicine Unit, Second Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
| | - Dimitrios Arampidis
- Clinical Research and Evidence‐Based Medicine Unit, Second Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Mainou
- Clinical Research and Evidence‐Based Medicine Unit, Second Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
| | - Nikolaos Papadopoulos
- School of Medicine, Faculty of Health ScienceAristotle University of ThessalonikiThessalonikiGreece
| | - Thomas Karagiannis
- Clinical Research and Evidence‐Based Medicine Unit, Second Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
| | - Tarek Nayfeh
- Evidence‐based Practice Center, Mayo ClinicRochesterMinnesotaUSA
| | - Aris Liakos
- Clinical Research and Evidence‐Based Medicine Unit, Second Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
| | - Emmanouil Sinakos
- Fourth Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
| | - Apostolos Tsapas
- Clinical Research and Evidence‐Based Medicine Unit, Second Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
- Harris Manchester CollegeUniversity of OxfordOxfordUK
| | - Eleni Bekiari
- Clinical Research and Evidence‐Based Medicine Unit, Second Medical DepartmentAristotle University of ThessalonikiThessalonikiGreece
| |
Collapse
|
10
|
Zhang H, Huang OY, Chen LL, Zhang N, Chen WY, Zheng W, Zhang XL, Jin XZ, Chen SD, Targher G, Byrne CD, Zheng MH. Diagnostic accuracy of exhaled nitric oxide for the non-invasive identification of patients with fibrotic metabolic dysfunction-associated steatohepatitis. Ann Med 2024; 56:2410408. [PMID: 39376063 PMCID: PMC11463020 DOI: 10.1080/07853890.2024.2410408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Fibrotic metabolic dysfunction-associated steatohepatitis (MASH) is a condition at risk of progressing to advanced liver disease. We examined whether an innovative exhaled nitric oxide (eNO) breath test (BT) can accurately diagnose fibrotic MASH without requiring blood tests. METHODS One hundred and forty-seven patients with MASH were recruited, and all tests were undertaken within 1 week of recruitment. With fibrotic MASH (NAS ≥ 4 and fibrosis stage ≥ 2) as the main outcome indicator, the diagnostic efficacy of eNO in identifying fibrotic MASH was compared to other validated models for advanced fibrosis requiring venesection, namely FAST, Agile 3+, and FIB-4 scores. RESULTS The mean age was 40.36 ± 12.28 years, 73.5% were men. Mean body mass index was 28.83 ± 4.31 kg/m2. The proportion of fibrotic MASH was 29.25%. The area under the receiver operating curve for eNO in diagnosing fibrotic MASH was 0.737 [95% CI 0.650-0.823], which was comparable to FAST (0.751 [0.656-0.846]), Agile 3+ (0.764 [0.670-0.858]), and FIB-4 (0.721 [0.620-0.821]) (all DeLong test p > 0.05). A cut-off of eNO <8.5 ppb gave a sensitivity of 86.0% and a negative predictive value of 88.5% for ruling-out fibrotic MASH. A cut-off of eNO >13.5 ppb provided a specificity of 91.3% and a positive predictive value of 65.4% for ruling-in fibrotic MASH. Sensitivity analyses demonstrated that the diagnostic efficacy of eNO was similar across characteristics such as age. Moreover, adding vibration-controlled transient elastography-LSM (liver stiffness measurement) reduced the uncertainty interval from 46.9% to 39.5%. CONCLUSIONS The eNO-BT is a promising simple test for non-invasively identifying fibrotic MASH, and its performance is further improved by adding LSM measurement.
Collapse
Affiliation(s)
- Huai Zhang
- Department of Biostatistics and Medical Record, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ou-Yang Huang
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Li Chen
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ni Zhang
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Ying Chen
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen Zheng
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Lei Zhang
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Zhi Jin
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Ming-Hua Zheng
- MAFLD Research Centre, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
11
|
Castera L, Garteiser P, Laouenan C, Vidal-Trécan T, Vallet-Pichard A, Manchon P, Paradis V, Czernichow S, Roulot D, Larger E, Pol S, Bedossa P, Correas JM, Valla D, Gautier JF, Van Beers BE. Prospective head-to-head comparison of non-invasive scores for diagnosis of fibrotic MASH in patients with type 2 diabetes. J Hepatol 2024; 81:195-206. [PMID: 38548067 DOI: 10.1016/j.jhep.2024.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND & AIMS Non-invasive scores have been proposed to identify patients with fibrotic, metabolic dysfunction-associated steatohepatitis (MASH), who are at the highest risk of progression to complications of cirrhosis and may benefit from pharmacologic treatments. However, data in patients with type 2 diabetes (T2DM) are lacking. The aim of this multicenter prospective study was to perform a head-to-head comparison of FAST (FibroScan-aspartate aminotransferase [AST]), MAST (MRI-AST), MEFIB (magnetic resonance elastography [MRE] plus FIB-4), and FNI (fibrotic NASH index) for detecting fibrotic MASH in patients with T2DM. METHODS A total of 330 outpatients with T2DM and biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) from the QUID-NASH study (NCT03634098), who underwent FibroScan, MRI-proton density fat fraction and MRE at the time of liver biopsy were studied. The main outcome was fibrotic MASH, defined as NAS ≥4 (with at least one point for each parameter) and fibrosis stage ≥2 (centrally reviewed). RESULTS All data for score comparisons were available for 245 patients (median age 59 years, 65% male, median BMI 31 kg/m2; fibrotic MASH in 39%). FAST and MAST had similar accuracy (AUROCs 0.81 vs. 0.79, p = 0.41) but outperformed FNI (0.74; p = 0.01) and MEFIB (0.68; p <0.0001). When using original cut-offs, MAST outperformed FAST, MEFIB and FNI when comparing the percentage of correctly classified patients, in whom liver biopsy would be avoided (69% vs. 48%, 46%, 39%, respectively; p <0.001). When using cut-offs specific to our population, FAST outperformed FNI and MAST (56% vs. 40%, and 38%, respectively; p <0.001). CONCLUSION Our findings show that FAST, MAST, MEFIB and FNI are accurate non-invasive tools to identify patients with T2DM and fibrotic MASH in secondary/tertiary diabetes clinics. Cut-offs adapted to the T2DM population should be considered. IMPACT AND IMPLICATIONS Among patients with type 2 diabetes (T2DM), identifying those with metabolic dysfunction-associated steatohepatitis and significant fibrosis, who are the most at risk of developing clinical liver-related outcomes and who may benefit from pharmacologic treatments, is an unmet need. In this prospective multicenter study, we compared four non-invasive scores, three based on imaging (MRI or ultrasound technologies) and one on laboratory blood tests, for this purpose, using original and study-specific cut-offs. Our findings show that FAST, MAST, MEFIB and FNI are accurate non-invasive tools to identify patients with T2DM and fibrotic MASH in secondary/tertiary diabetes clinics. Cut-offs adapted to the T2DM population should be considered. TRIAL REGISTRATION NUMBER NCT03634098.
Collapse
Affiliation(s)
- Laurent Castera
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service d'hépatologie, AP-HP, Hôpital Beaujon, F-92110 Clichy-la-Garenne, France.
| | | | - Cédric Laouenan
- Université Paris Cité, UMR1137 (IAME), Inserm, F-75018 Paris, France; (DEBRC), APHP, Hôpital Bichat, Paris, France
| | - Tiphaine Vidal-Trécan
- Centre Universitaire du Diabète et de ses Complications, AP-HP, Hôpital Lariboisière, F-75010 Paris, France
| | | | | | - Valérie Paradis
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service d'anatomie et de cytologie pathologiques, AP-HP, Hôpital Beaujon, 792110 Clichy-la-Garenne, France
| | - Sébastien Czernichow
- INSERM UMR-S1151, CNRS UMR-S8253, Immediab lab, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France; Service de nutrition, centre spécialisé Obésité, APHP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Dominique Roulot
- Université Paris-Est, U955, Inserm, F-94000 Créteil, France; Unité d'hépatologie, AP-HP, Hôpital Avicenne, 93000 Bobigny, France
| | - Etienne Larger
- Université Paris Cité, Institut Cochin, U1016, Inserm, F-75014 Paris, France; Service de diabétologie, AP-HP, Groupe hospitalier Cochin, F-75014 Paris, France
| | - Stanislas Pol
- Service d'hépatologie, AP-HP, Groupe hospitalier Cochin, F-75014 Paris, France; Université Paris Cité, Institut Cochin, U1016, Inserm, F-75014 Paris, France
| | - Pierre Bedossa
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Liverpat, F-75116 Paris, France
| | - Jean-Michel Correas
- Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, Paris, France; Service d'Imagerie Adulte, AP-HP, Hôpital Necker Enfants Malades, F-75015 Paris, France
| | - Dominique Valla
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service d'hépatologie, AP-HP, Hôpital Beaujon, F-92110 Clichy-la-Garenne, France
| | - Jean-François Gautier
- Centre Universitaire du Diabète et de ses Complications, AP-HP, Hôpital Lariboisière, F-75010 Paris, France; INSERM UMR-S1151, CNRS UMR-S8253, Immediab lab, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Bernard E Van Beers
- Université Paris Cité, UMR1149 (CRI), Inserm, F-75018 Paris, France; Service de Radiologie, AP-HP, Hôpital Beaujon, F-92110 Clichy-la-Garenne, France
| |
Collapse
|
12
|
Hany M, Demerdash HM, Abouelnasr AA, Torensma B. Effect of Cytokeratin-18, C-peptide, MHR, and MACK-3 Biomarkers in Metabolic Dysfunction-Associated Fatty Liver Disease After Laparoscopic Sleeve Gastrectomy. Biomark Insights 2024; 19:11772719241256496. [PMID: 38836118 PMCID: PMC11149444 DOI: 10.1177/11772719241256496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/05/2024] [Indexed: 06/06/2024] Open
Abstract
Background Laparoscopic sleeve gastrectomy (LSG) has emerged as a valuable treatment for various metabolic disorders, including metabolic dysfunction-associated fatty liver disease (MAFLD) in patients with obesity. Consequently, there is a pressing need to develop noninvasive biomarkers for diagnosing and monitoring disease progression. Objectives This study aimed to evaluate specific biomarkers, including Cytokeratin-18 (CK-18), C-peptide, monocyte to HDL cholesterol ratio (MHR), and MACK-3, in patients with obesity with MAFLD undergoing LSG. Design A prospective cohort study on patients with obesity before and 6 months after the LSG procedure. Methods 70 patients with obesity with confirmed MAFLD, determined by Transient Elastography (TE), were pre- and 6 months postoperatively tested. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), lipid profile, ghrelin, leptin, peptide YY, GLP-1, and liver fibrosis scores, including AST/ALT ratio (AAR), Fibrosis-4 index (FIB-4), and BARD Score were tested. Results BMI significantly decreased in all participants, with a % excess weight loss of 62.0% ± 15.4%. TE measurements revealed a significant postoperative reduction from 100% to 87.1% (P = .006). All selected biomarkers showed significant postoperative improvement-a significant association of CK-18 with MAFLD markers, including AAR, FIB-4, and BARD score, were found. MACK-3 had positive associations with FIB-4. C-peptide and MHR showed no association with MAFLD markers. Furthermore, there was a positive correlation between CK-18 and MACK-3 tests and between C-peptide and CK-18 and MACK-3. Additionally, a receiver operating characteristic (ROC) curve was constructed, with CK-18 performing the best, with an estimated area under the curve of 0.863. Conclusion Serum CK-18 outperformed other selected biomarkers in predicting and monitoring MAFLD in patients with obesity, suggesting its prospective utility in clinical practice. Further studies are needed to validate the accuracy of the MACK-3 test.
Collapse
Affiliation(s)
- Mohamed Hany
- Department of Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt
- Madina Women's Hospital, Alexandria, Egypt
| | - Hala M Demerdash
- Department of Clinical Pathology, Alexandria University, Alexandria, Egypt
| | | | - Bart Torensma
- Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
13
|
Chan WK, Petta S, Noureddin M, Goh GBB, Wong VWS. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S23-S40. [PMID: 38813831 DOI: 10.1111/apt.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 12/26/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common chronic liver disease and an important cause of cirrhosis and hepatocellular carcinoma. It is strongly associated with type 2 diabetes and obesity. Because of the huge number of patients at risk of MASLD, it is imperative to use non-invasive tests appropriately. AIMS To provide a narrative review on the performance and limitations of non-invasive tests, with a special emphasis on the impact of diabetes and obesity. METHODS We searched PubMed and Cochrane databases for articles published from 1990 to August 2023. RESULTS Abdominal ultrasonography remains the primary method to diagnose hepatic steatosis, while magnetic resonance imaging proton density fat fraction is currently the gold standard to quantify steatosis. Simple fibrosis scores such as the Fibrosis-4 index are well suited as initial assessment in primary care and non-hepatology settings to rule out advanced fibrosis and future risk of liver-related complications. However, because of its low positive predictive value, an abnormal test should be followed by specific blood (e.g. Enhanced Liver Fibrosis score) or imaging biomarkers (e.g. vibration-controlled transient elastography and magnetic resonance elastography) of fibrosis. Some non-invasive tests of fibrosis appear to be less accurate in patients with diabetes. Obesity also affects the performance of abdominal ultrasonography and transient elastography, whereas magnetic resonance imaging may not be feasible in some patients with severe obesity. CONCLUSIONS This article highlights issues surrounding the clinical application of non-invasive tests for MASLD in patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Palermo, Italy
- Department of Economics and Statistics, University of Palermo, Palermo, Italy
| | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, Texas, USA
| | - George Boon Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Zoncapè M, Liguori A, Tsochatzis EA. Non-invasive testing and risk-stratification in patients with MASLD. Eur J Intern Med 2024; 122:11-19. [PMID: 38246813 DOI: 10.1016/j.ejim.2024.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The development and validation of non-invasive fibrosis tests (NITs) has changed clinical practice in Hepatology over the last 15 years. Metabolic associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease in western countries, with up to a third of the unselected adult population affected. In this article, we review the use of NITs in the diagnosis and staging of MASLD. We discuss their use in the diagnosis of steatosis, steatohepatitis and fibrosis and critically evaluate recently published data. These NITs include a variety of approaches, such as serum markers like FIB-4, pro-C3 and ELF, imaging techniques like Fibroscan® and MRE, and combined scores like Agile 3+ and Agile 4, offering a range of options for healthcare providers. Furthermore, these non-invasive tests also serve as valuable prognostic tools, allowing for better risk assessment and improved patient management, particularly in predicting liver-related events and overall mortality.
Collapse
Affiliation(s)
- Mirko Zoncapè
- Sheila Sherlock Liver Unit, Royal Free Hospital, London, UK; UCL Institute for Liver and Digestive Health, University College London, UK; Liver Unit, Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Antonio Liguori
- Sheila Sherlock Liver Unit, Royal Free Hospital, London, UK; UCL Institute for Liver and Digestive Health, University College London, UK; Medical and Surgical Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Emmanuel A Tsochatzis
- Sheila Sherlock Liver Unit, Royal Free Hospital, London, UK; UCL Institute for Liver and Digestive Health, University College London, UK.
| |
Collapse
|
15
|
Lai JCT, Wong VWS. Using NIS2+™ to identify at-risk MASH in clinical trials. J Hepatol 2024; 80:181-183. [PMID: 38013143 DOI: 10.1016/j.jhep.2023.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Jimmy Che-To Lai
- Medical Data Analytic Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytic Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|