1
|
Vohra MS, Ahmad B, Taylor ER, Benchoula K, Fong IL, Parhar IS, Ogawa S, Serpell CJ, Wong EH. 5,7,3',4',5'-pentamethoxyflavone (PMF) exhibits anti-obesity and neuroprotective effects in an obese zebrafish model. Mol Cell Endocrinol 2025; 604:112554. [PMID: 40252912 DOI: 10.1016/j.mce.2025.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Obesity is a multi-chronic illness characterized by superfluous fat accumulation, contributing to significant metabolic and neurological complications. Current therapeutic approaches have limited efficacy and notable side effects, underscoring an urgent demand for novel, safer alternatives. This study is the first to investigate the anti-obesity potential of 5,7,3',4',5'-pentamethoxyflavone (PMF) in vivo using a zebrafish model. Our findings demonstrate that PMF administration exerts pronounced anti-obesogenic effects, evidenced by reductions in blood glucose, plasma triglycerides, total cholesterol, hepatic low-density lipoproteins (LDL), and high-density lipoproteins (HDL). Mechanistically, PMF suppressed hepatic adipogenic and lipogenic gene expression while promoting lipid catabolism through activation of peroxisome proliferator-activated receptor-alpha (PPAR-α) and its downstream enzymes, including acyl-CoA oxidase 1 (ACOX1), medium-chain acyl-CoA dehydrogenase (ACADM), and carnitine palmitoyl transferase 1B (CPT-1β). Additionally, PMF markedly mitigated oxidative stress by lowering malondialdehyde (MDA) and nitric oxide (NO) levels, accompanied by increased antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST). Notably, PMF effectively prevented obesity by suppressing food intake, downregulating orexigenic genes, and enhancing anorexigenic signals. Furthermore, PMF exhibited neuroprotective properties by elevating brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B2 (TrkB2), revealing a novel link between metabolic and neurological regulation. This study provides pioneering, comprehensive in vivo evidence supporting PMF as a promising therapeutic candidate with dual beneficial roles in metabolic health and neuroprotection.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Emerald R Taylor
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Kent, Canterbury, CT2 7NH, United Kingdom
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, 94300, Kota Samarahan, Malaysia; Universiti Malaysia Sarawak, Malaysia
| | - Ishwar S Parhar
- School of Medicine and Health Sciences, Monash University, Sunway Campus, PJ 46150, Selangor, Malaysia
| | - Satoshi Ogawa
- School of Medicine and Health Sciences, Monash University, Sunway Campus, PJ 46150, Selangor, Malaysia
| | - Christopher J Serpell
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1 1AX, United Kingdom.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University Lakeside Campus, 1, Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia.
| |
Collapse
|
2
|
Niu W, Wang H, Wang B, Mao X, Du M. Resveratrol improves muscle regeneration in obese mice through enhancing mitochondrial biogenesis. J Nutr Biochem 2021; 98:108804. [PMID: 34171502 DOI: 10.1016/j.jnutbio.2021.108804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. Obesity is known to inhibit AMP-activated protein kinase (AMPK) activity, which impedes mitochondrial biogenesis, myogenic differentiation and muscle regeneration. Resveratrol has an effective anti-obesity effect, but its effect on regeneration of muscle in obese mice remains to be tested. We hypothesized that resveratrol activates AMPK and mitochondrial biogenesis to improve muscle regeneration. Male C57BL/6J mice were fed a control diet or a 60% high-fat diet with or without resveratrol supplementation for 8 weeks and, then, the tibialis anterior muscle was subjected to cardiotoxin-induced muscle injury. Muscle tissue was collected at 3 and 7 d after injury. We found that resveratrol enhanced both proliferation and differentiation of satellite cells following injury in obese mice. Markers of mitochondrial biogenesis were upregulated in resveratrol-treated mice. In C2C12 myogenic cells, resveratrol activated AMPK and stimulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which were associated with enhanced myogenic differentiation. Such effects of resveratrol were abolished by AMPKα1 ablation, showing the mediatory roles of AMPK. In summary, dietary resveratrol activates AMPK/ proliferator-activated receptor gamma coactivator 1-alpha axis to facilitate mitochondrial biogenesis and muscle regeneration impaired due to obesity.
Collapse
Affiliation(s)
- Wenjing Niu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueying Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
3
|
Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017; 35:200-221. [PMID: 27702700 DOI: 10.1016/j.arr.2016.09.008] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway.
Collapse
|
4
|
Zou T, Yu B, Yu J, Mao X, Zheng P, He J, Huang Z, Liu Y, Chen D. Moderately decreased maternal dietary energy intake during pregnancy reduces fetal skeletal muscle mitochondrial biogenesis in the pigs. GENES AND NUTRITION 2016; 11:19. [PMID: 27551320 PMCID: PMC4968452 DOI: 10.1186/s12263-016-0535-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mitochondria are of major importance in oocyte and early embryo, playing a key role in maintaining energy homeostasis. Epidemiological findings indicate that maternal undernutrition-induced mitochondrial dysfunction during pregnancy is associated with the development of metabolic disorders in offspring. Here, we investigated the effects of moderately decreased maternal energy intake during pregnancy on skeletal muscle mitochondrial biogenesis in fetal offspring with pig as a model. METHODS Pregnant Meishan sows were allocated to a standard-energy (SE) intake group as recommended by the National Research Council (NRC; 2012) and a low-energy (LE) intake group. Fetal umbilical vein serum and longissimus muscle samples were collected for further analysis on day 90 of pregnancy. RESULTS Sow and fetal weights and the concentrations of serum growth hormone (GH) and glucose were reduced in LE group. Maternal LE diet decreased the messenger RNA (mRNA) expression of genes involved in mitochondrial biogenesis and function such as peroxisome proliferator-activated receptor gamma coactivator 1α (PPARGC1A), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), β subunit of mitochondrial H(+)-ATP synthase (ATB5B), sirtuin 1 (Sirt1), and citrate synthase (CS). The protein expression of PPARGC1A and Sirt1, intracellular NAD(+)-to-NADH ratio, and CS activity was reduced in LE group, and accordingly, mitochondrial DNA (mtDNA) content was decreased. Moreover, copper/zinc superoxide dismutase (CuZn-SOD) expression at both mRNA and protein levels and SOD and catalase (CAT) activities were reduced in LE group as well. CONCLUSIONS The observed decrease in muscle mitochondrial biogenesis and antioxidant defense capacity suggests that moderately decreased maternal energy intake during pregnancy impairs mitochondrial function in fetal pigs.
Collapse
Affiliation(s)
- Tiande Zou
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Yue Liu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Cheng du, China
| |
Collapse
|
5
|
Fu X, Zhu M, Zhang S, Foretz M, Viollet B, Du M. Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK. Diabetes 2016; 65:188-200. [PMID: 26384382 PMCID: PMC4686944 DOI: 10.2337/db15-0647] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022]
Abstract
Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. The obese condition is known to inhibit AMPK activity in multiple tissues. We hypothesized that the loss of AMPK activity is a major reason for hampered muscle regeneration in obese subjects. We found that obesity inhibits AMPK activity in regenerating muscle, which was associated with impeded satellite cell activation and impaired muscle regeneration. To test the mediatory role of AMPKα1, we knocked out AMPKα1 and found that both proliferation and differentiation of satellite cells are reduced after injury and that muscle regeneration is severely impeded, reminiscent of hampered muscle regeneration seen in obese subjects. Transplanted satellite cells with AMPKα1 deficiency had severely impaired myogenic capacity in regenerating muscle fibers. We also found that attenuated muscle regeneration in obese mice is rescued by AICAR, a drug that specifically activates AMPK, but AICAR treatment failed to improve muscle regeneration in obese mice with satellite cell-specific AMPKα1 knockout, demonstrating the importance of AMPKα1 in satellite cell activation and muscle regeneration. In summary, AMPKα1 is a key mediator linking obesity and impaired muscle regeneration, providing a convenient drug target to facilitate muscle regeneration in obese populations.
Collapse
Affiliation(s)
- Xing Fu
- Washington Center for Muscle Biology, Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington State University, Pullman, WA
| | - Meijun Zhu
- School of Food Science, Washington State University, Pullman, WA
| | - Shuming Zhang
- School of Food Science, Washington State University, Pullman, WA
| | - Marc Foretz
- INSERM U1016, Institut Cochin, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France CNRS UMR 8104, Paris, France
| | - Benoit Viollet
- INSERM U1016, Institut Cochin, Paris, France Université Paris Descartes, Sorbonne Paris Cité, Paris, France CNRS UMR 8104, Paris, France
| | - Min Du
- Washington Center for Muscle Biology, Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington State University, Pullman, WA
| |
Collapse
|
6
|
Fu X, Zhu MJ, Dodson MV, Du M. AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration. J Biol Chem 2015; 290:26445-56. [PMID: 26370082 DOI: 10.1074/jbc.m115.665232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration.
Collapse
Affiliation(s)
- Xing Fu
- From the Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington Center for Muscle Biology and
| | - Mei-Jun Zhu
- the School of Food Sciences, Washington State University, Pullman, Washington 99164
| | - Mike V Dodson
- From the Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington Center for Muscle Biology and
| | - Min Du
- From the Department of Animal Sciences and Department of Pharmaceutical Sciences, Washington Center for Muscle Biology and
| |
Collapse
|