1
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Pelton JM, Hochuli JE, Sadecki PW, Katoh T, Suga H, Hicks LM, Muratov EN, Tropsha A, Bowers AA. Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products. J Am Chem Soc 2024; 146:8016-8030. [PMID: 38470819 PMCID: PMC11151186 DOI: 10.1021/jacs.3c11306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.
Collapse
Affiliation(s)
- Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua E. Hochuli
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Eugene N. Muratov
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Tropsha
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Chettri D, Verma AK. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications. Carbohydr Res 2023; 529:108853. [PMID: 37235954 DOI: 10.1016/j.carres.2023.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Glycans are the most abundant and diverse group of biomolecules with a crucial role in all the biological processes. Their structural and functional diversity is not genetically encoded, but depends on Carbohydrate Active Enzymes (CAZymes) which carry out all catalytic activities in terms of synthesis, modification, and degradation. CAZymes comprise large families of enzymes with specific functions and are widely used for various commercial applications ranging from biofuel production to textile and food industries with impact on biorefineries. To understand the structure and functional mechanism of these CAZymes for their modification for industrial use, together with knowledge of therapeutic aspects of their dysfunction associated with various diseases, CAZyme inhibitors can be used as a valuable tool. In search for new inhibitors, the screening of various secondary metabolites using high-throughput techniques and rational design techniques have been explored. The inhibitors can thus help tune CAZymes and are emerging as a potential research interest.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
4
|
Pascha M, Thijssen V, Egido JE, Linthorst MW, van Lanen JH, van Dongen DAA, Hopstaken AJP, van Kuppeveld FJM, Snijder J, de Haan CAM, Jongkees SAK. Inhibition of H1 and H5 Influenza A Virus Entry by Diverse Macrocyclic Peptides Targeting the Hemagglutinin Stem Region. ACS Chem Biol 2022; 17:2425-2436. [PMID: 35926224 PMCID: PMC9486808 DOI: 10.1021/acschembio.2c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Influenza A viruses pose a serious pandemic risk, while generation of efficient vaccines against seasonal variants remains challenging. There is thus a pressing need for new treatment options. We report here a set of macrocyclic peptides that inhibit influenza A virus infection at low nanomolar concentrations by binding to hemagglutinin, selected using ultrahigh-throughput screening of a diverse peptide library. The peptides are active against both H1 and H5 variants, with no detectable cytotoxicity. Despite the high sequence diversity across hits, all tested peptides were found to bind to the same region in the hemagglutinin stem by HDX-MS epitope mapping. A mutation in this region identified in an escape variant confirmed the binding site. This stands in contrast to the immunodominance of the head region for antibody binding and suggests that macrocyclic peptides from in vitro display may be well suited for finding new druggable sites not revealed by antibodies. Functional analysis indicates that these peptides stabilize the prefusion conformation of the protein and thereby prevent virus-cell fusion. High-throughput screening of macrocyclic peptides is thus shown here to be a powerful method for the discovery of novel broadly acting viral fusion inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Mirte
N. Pascha
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands
| | - Vito Thijssen
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Julia E. Egido
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands,Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mirte W. Linthorst
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jipke H. van Lanen
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands
| | - David A. A. van Dongen
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Antonius J. P. Hopstaken
- Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for
Molecular and Life Sciences, VU Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Frank J. M. van Kuppeveld
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section
Virology, Division Infectious Diseases and Immunology, Department
of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584
CL Utrecht, The Netherlands,
| | - Seino A. K. Jongkees
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands,Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for
Molecular and Life Sciences, VU Amsterdam, de Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands,
| |
Collapse
|
5
|
Zheng Q, Su Z, Yu Y, Liu L. Recent progress in dissecting ubiquitin signals with chemical biology tools. Curr Opin Chem Biol 2022; 70:102187. [PMID: 35961065 DOI: 10.1016/j.cbpa.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Protein ubiquitination regulates almost all eukaryotic cellular processes, and is of very high complexity due to the diversity of ubiquitin (Ub) modifications including mono-, multiply mono-, homotypic poly-, and even heterotypic poly-ubiquitination. To accurately elucidate the role of each specific Ub signal in different cells with spatiotemporal resolutions, a variety of chemical biology tools have been developed. In this review, we summarize some recently developed chemical biology tools for ubiquitination studies and their applications in molecular and cellular biology.
Collapse
Affiliation(s)
- Qingyun Zheng
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhen Su
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Yu
- School of Medicine, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Coronado JN, Ngo P, Anslyn EV, Ellington AD. Chemical insights into flexizyme-mediated tRNA acylation. Cell Chem Biol 2022; 29:1071-1112. [PMID: 35413283 DOI: 10.1016/j.chembiol.2022.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
A critical step in repurposing the cellular translation machinery for the synthesis of polymeric products is the acylation of transfer RNA (tRNA) with unnatural monomers. Toward this goal, flexizymes, ribozymes capable of aminoacylation, have emerged as a uniquely adept tool for charging tRNA with ever increasingly diverse substrates. In this review, we present a library of monomer substrates that have been tested for tRNA acylation with the flexizyme system. From this mile-high view, we provide insights for understanding the chemical factors that influence flexizyme-mediated tRNA acylation. We conclude that flexizymes are primitive esterification catalysts that display a modest binding affinity to the monomer's aromatic recognition element. Together, these robust, yet flexible, flexizyme systems provide researchers with unprecedented access for preparing unnatural acyl-tRNA and the opportunity to repurpose the translation machinery for the synthesis of novel biologically derived structures beyond native proteins and peptides.
Collapse
Affiliation(s)
- Jaime N Coronado
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Phuoc Ngo
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
|
8
|
van Haren MJ, Zhang Y, Thijssen V, Buijs N, Gao Y, Mateuszuk L, Fedak FA, Kij A, Campagna R, Sartini D, Emanuelli M, Chlopicki S, Jongkees SAK, Martin NI. Macrocyclic peptides as allosteric inhibitors of nicotinamide N-methyltransferase (NNMT). RSC Chem Biol 2021; 2:1546-1555. [PMID: 34704059 PMCID: PMC8496086 DOI: 10.1039/d1cb00134e] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide to form 1-methylnicotinamide (MNA) using S-adenosyl-l-methionine (SAM) as the methyl donor. The complexity of the role of NNMT in healthy and disease states is slowly being elucidated and provides an indication that NNMT may be an interesting therapeutic target for a variety of diseases including cancer, diabetes, and obesity. Most inhibitors of NNMT described to date are structurally related to one or both of its substrates. In the search for structurally diverse NNMT inhibitors, an mRNA display screening technique was used to identify macrocyclic peptides which bind to NNMT. Several of the cyclic peptides identified in this manner show potent inhibition of NNMT with IC50 values as low as 229 nM. The peptides were also found to downregulate MNA production in cellular assays. Interestingly, substrate competition experiments reveal that these cyclic peptide inhibitors are noncompetitive with either SAM or NA indicating they may be the first allosteric inhibitors reported for NNMT.
Collapse
Affiliation(s)
- Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Yurui Zhang
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Vito Thijssen
- Chemical Biology & Drug Discovery Group, Utrecht Institute for Pharmaceutical Sciences Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Ned Buijs
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Yongzhi Gao
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Lukasz Mateuszuk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET) Bobrzynskiego 14 30-348 Krakow Poland
| | - Filip A Fedak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET) Bobrzynskiego 14 30-348 Krakow Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET) Bobrzynskiego 14 30-348 Krakow Poland
| | - Roberto Campagna
- Department of Clinical Sciences, Universitá Politecnica delle Marche Via Ranieri 65 60131 Ancona Italy
| | - Davide Sartini
- Department of Clinical Sciences, Universitá Politecnica delle Marche Via Ranieri 65 60131 Ancona Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Universitá Politecnica delle Marche Via Ranieri 65 60131 Ancona Italy
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET) Bobrzynskiego 14 30-348 Krakow Poland.,Jagiellonian University Medical College, Chair of Pharmacology Grzegorzecka 16 31-531 Krakow Poland
| | - Seino A K Jongkees
- Chemical Biology & Drug Discovery Group, Utrecht Institute for Pharmaceutical Sciences Universiteitsweg 99 3584 CG Utrecht The Netherlands .,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| |
Collapse
|
9
|
Dengler S, Mandal PK, Allmendinger L, Douat C, Huc I. Conformational interplay in hybrid peptide-helical aromatic foldamer macrocycles. Chem Sci 2021; 12:11004-11012. [PMID: 34522297 PMCID: PMC8386670 DOI: 10.1039/d1sc03640h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Macrocyclic peptides are an important class of bioactive substances. When inserting an aromatic foldamer segment in a macrocyclic peptide, the strong folding propensity of the former may influence the conformation and alter the properties of the latter. Such an insertion is relevant because some foldamer-peptide hybrids have recently been shown to be tolerated by the ribosome, prior to forming macrocycles, and can thus be produced using an in vitro translation system. We have investigated the interplay of peptide and foldamer conformations in such hybrid macrocycles. We show that foldamer helical folding always prevails and stands as a viable means to stretch, i.e. unfold, peptides in a solvent dependent manner. Conversely, the peptide systematically has a reciprocal influence and gives rise to strong foldamer helix handedness bias as well as foldamer helix stabilisation. The hybrid macrocycles also show resistance towards proteolytic degradation.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Pradeep K Mandal
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Lars Allmendinger
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität Butenandtstraße 5-13 D-81377 Munich Germany
| |
Collapse
|
10
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
11
|
Zhang Y, He S, Rui X, Simpson BK. Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α-amylase and lipase. Food Chem 2021; 367:130695. [PMID: 34365251 DOI: 10.1016/j.foodchem.2021.130695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/05/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022]
Abstract
The study illustrates the molecular mechanisms by which marine-derived peptides exhibited different structures and inhibition functions to concurrently inhibit multiple enzymes involved in chronic diseases. Peptides (2 mg/mL) exhibited inhibition against angiotensin-converting enzyme (ACE, inhibition of 52.2-78.8%), pancreatic α-amylase (16.3-27.2%) and lipase (5.3-17.0%). Further in silico analyses on physiochemistry, bioactivity, safety and interaction energy with target enzymes indicated that one peptide could inhibit multiple enzymes. Peptide FENLLEELK potent in inhibiting both ACE and α-amylase showed different mechanisms: it had ordered extended structure in ACE active pocket with conventional H-bond towards Arg522 which is the ligand for activator Cl-, while the peptide folded into compact "lariat" conformation within α-amylase active site and the K residue in peptide formed intensive H-bonds and electrostatic interactions with catalytic triad Asp197 - Asp300 - Glu233. Another peptide APFPLR showed different poses in inhibiting ACE, α-amylase and lipase, and it formed direct interactions to lipase catalytic residues Phe77 & His263.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue H9X 3V9, Québec, Canada; IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64000 Pau, France.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China.
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu Province, China.
| | - Benjamin K Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue H9X 3V9, Québec, Canada.
| |
Collapse
|
12
|
Vu QN, Young R, Sudhakar HK, Gao T, Huang T, Tan YS, Lau YH. Cyclisation strategies for stabilising peptides with irregular conformations. RSC Med Chem 2021; 12:887-901. [PMID: 34263169 PMCID: PMC8230030 DOI: 10.1039/d1md00098e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclisation is a common synthetic strategy for enhancing the therapeutic potential of peptide-based molecules. While there are extensive studies on peptide cyclisation for reinforcing regular secondary structures such as α-helices and β-sheets, there are remarkably few reports of cyclising peptides which adopt irregular conformations in their bioactive target-bound state. In this review, we highlight examples where cyclisation techniques have been successful in stabilising irregular conformations, then discuss how the design of cyclic constraints for irregularly structured peptides can be informed by existing β-strand stabilisation approaches, new computational design techniques, and structural principles extracted from cyclic peptide library screening hits. Through this analysis, we demonstrate how existing peptide cyclisation techniques can be adapted to address the synthetic design challenge of stabilising irregularly structured binding motifs.
Collapse
Affiliation(s)
- Quynh Ngoc Vu
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Reginald Young
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | | | - Tianyi Gao
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Tiancheng Huang
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR) 30 Biopolis Street, #07-01, Matrix Singapore 138671 Singapore
| | - Yu Heng Lau
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| |
Collapse
|
13
|
Shi J, Sharif S, Balsollier C, Ruijtenbeek R, Pieters RJ, Jongkees SAK. C-Terminal Tag Location Hampers in Vitro Profiling of OGT Peptide Substrates by mRNA Display. Chembiochem 2021; 22:666-671. [PMID: 33022805 PMCID: PMC7894566 DOI: 10.1002/cbic.202000624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Indexed: 12/17/2022]
Abstract
O-GlcNAc transferase (OGT) is the only enzyme that catalyzes the post-translational modification of proteins at Ser/Thr with a single β-N-acetylglucosamine (O-GlcNAcylation). Its activity has been associated with chronic diseases such as cancer, diabetes and neurodegenerative disease. Although numerous OGT substrates have been identified, its accepted substrate scope can still be refined. We report here an attempt to better define the peptide-recognition requirements of the OGT active site by using mRNA display, taking advantage of its extremely high throughput to assess the substrate potential of a library of all possible nonamer peptides. An antibody-based selection process is described here that is able to enrich an OGT substrate peptide from such a library, but with poor absolute recovery. Following four rounds of selection for O-GlcNAcylated peptides, sequencing revealed 14 peptides containing Ser/Thr, but these were shown by luminescence-coupled assays and peptide microarray not to be OGT substrates. By contrast, subsequent testing of an N-terminal tag approach showed exemplary recovery. Our approach demonstrates the power of genetically encoded libraries for selection of peptide substrates, even from a very low initial starting abundance and under suboptimal conditions, and emphasizes the need to consider the binding biases of antibodies and both C- and N-terminal tags in profiling peptide substrates by high-throughput display.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Key Laboratory of Carbohydrate Chemistry & Biotechnology Ministry of Education, School of BiotechnologyJiangnan University214122WuxiP. R. China
| | - Suhela Sharif
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Cyril Balsollier
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- PamGene International BV's-Hertogenbosch5211 HHThe Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| |
Collapse
|
14
|
Development of cyclic peptides with potent in vivo osteogenic activity through RaPID-based affinity maturation. Proc Natl Acad Sci U S A 2020; 117:31070-31077. [PMID: 33229551 PMCID: PMC7733813 DOI: 10.1073/pnas.2012266117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis is caused by a disequilibrium between bone resorption and bone formation. Therapeutics for osteoporosis can be divided into antiresorptives that suppress bone resorption and anabolics which increase bone formation. Currently, the only anabolic treatment options are parathyroid hormone mimetics or an anti-sclerostin monoclonal antibody. With the current global increases in demographics at risk for osteoporosis, development of therapeutics that elicit anabolic activity through alternative mechanisms is imperative. Blockade of the PlexinB1 and Semaphorin4D interaction on osteoblasts has been shown to be a promising mechanism to increase bone formation. Here we report the discovery of cyclic peptides by a novel RaPID (Random nonstandard Peptides Integrated Discovery) system-based affinity maturation methodology that generated the peptide PB1m6A9 which binds with high affinity to both human and mouse PlexinB1. The chemically dimerized peptide, PB1d6A9, showed potent inhibition of PlexinB1 signaling in mouse primary osteoblast cultures, resulting in significant enhancement of bone formation even compared to non-Semaphorin4D-treated controls. This high anabolic activity was also observed in vivo when the lipidated PB1d6A9 (PB1d6A9-Pal) was intravenously administered once weekly to ovariectomized mice, leading to complete rescue of bone loss. The potent osteogenic properties of this peptide shows great promise as an addition to the current anabolic treatment options for bone diseases such as osteoporosis.
Collapse
|
15
|
Ito S, Senoo A, Nagatoishi S, Ohue M, Yamamoto M, Tsumoto K, Wakui N. Structural Basis for the Binding Mechanism of Human Serum Albumin Complexed with Cyclic Peptide Dalbavancin. J Med Chem 2020; 63:14045-14053. [DOI: 10.1021/acs.jmedchem.0c01578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sho Ito
- ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Akinobu Senoo
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259-G3-56 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Wakui
- Department of Electrical and Electronic Systems Engineering, National Institute of Technology, Nagaoka College, 888 Nishikatakai, Nagaoka, Niigata 940-8532, Japan
| |
Collapse
|
16
|
Phenolic Acids from Lycium barbarum Leaves: In Vitro and In Silico Studies of the Inhibitory Activity against Porcine Pancreatic α-Amylase. Processes (Basel) 2020. [DOI: 10.3390/pr8111388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, bioactive compounds from vegetable food and waste are of great interest for their inhibitory potential against digestive enzymes. In the present study, the inhibitory activity of methanolic extract from Lycium barbarum leaves on porcine pancreas α-amylase has been studied. The α-amylase inhibitory activity of the constituent phenolic acids was also investigated. The leaves were extracted by ultrasound-assisted method, one of the most efficient techniques for bioactive extraction from plant materials, and then the phenolic acids were identified by Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) Liquid Chromatography/Mass Spectrometry (LC/MS). Chlorogenic and salicylic acids were the most abundant phenolic acids in L. barbarum leaf extract. The inhibitory effect against α-amylase, determined for individual compounds by in vitro assay, was higher for chlorogenic, salicylic, and caffeic acids. L. barbarum leaf extract showed an appreciable α-amylase inhibitory effect in a concentration-dependent manner. Docking studies of the considered phenolic acids into the active site of α-amylase suggested a conserved binding mode that is mainly stabilized through H-bonds and π-π stacking interactions.
Collapse
|
17
|
McAllister TE, Coleman OD, Roper G, Kawamura A. Structural diversity in
de novo
cyclic peptide ligands from genetically encoded library technologies. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tom E. McAllister
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Oliver D. Coleman
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Grace Roper
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Chemistry Research Laboratory, Department of Chemistry University of Oxford Oxford UK
| | - Akane Kawamura
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Chemistry Research Laboratory, Department of Chemistry University of Oxford Oxford UK
| |
Collapse
|
18
|
Design, Synthesis, and Activity Evaluation of Novel N-benzyl Deoxynojirimycin Derivatives for Use as α-Glucosidase Inhibitors. Molecules 2019; 24:molecules24183309. [PMID: 31514404 PMCID: PMC6766931 DOI: 10.3390/molecules24183309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
To obtain α-glucosidase inhibitors with high activity, 19 NB-DNJDs (N-benzyl-deoxynojirimycin derivatives) were designed and synthesized. The results indicated that the 19 NB-DNJDs displayed different inhibitory activities towards α-glucosidase in vitro. Compound 18a (1-(4-hydroxy-3-methoxybenzyl)-2-(hydroxymethyl) piperidine-3,4,5-triol) showed the highest activity, with an IC50 value of 0.207 ± 0.11 mM, followed by 18b (1-(3-bromo-4-hydroxy-5-methoxybenzyl)-2-(hydroxymethyl) piperidine-3,4,5-triol, IC50: 0.276 ± 0.13 mM). Both IC50 values of 18a and 18b were significantly lower than that of acarbose (IC50: 0.353 ± 0.09 mM). According to the structure-activity analysis, substitution of the benzyl and bromine groups on the benzene ring decreased the inhibition activity, while methoxy and hydroxyl group substitution increased the activity, especially with the hydroxyl group substitution. Molecular docking results showed that three hydrogen bonds were formed between compound 18a and amino acids in the active site of α-glucosidase. Additionally, an arene–arene interaction was also modelled between the phenyl ring of compound 18a and Arg 315. The three hydrogen bonds and the arene–arene interaction resulted in a low binding energy (−5.8 kcal/mol) and gave 18a a higher inhibition activity. Consequently, compound 18a is a promising candidate as a new α-glucosidase inhibitor for the treatment of type Ⅱ diabetes.
Collapse
|
19
|
Chao L, Jongkees S. High-Throughput Approaches in Carbohydrate-Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019; 58:12750-12760. [PMID: 30913359 PMCID: PMC6771893 DOI: 10.1002/anie.201900055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Indexed: 01/13/2023]
Abstract
Carbohydrates are attached and removed in living systems through the action of carbohydrate-active enzymes such as glycosyl transferases and glycoside hydrolases. The molecules resulting from these enzymes have many important roles in organisms, such as cellular communication, structural support, and energy metabolism. In general, each carbohydrate transformation requires a separate catalyst, and so these enzyme families are extremely diverse. To make this diversity manageable, high-throughput approaches look at many enzymes at once. Similarly, high-throughput approaches can be a powerful way of finding inhibitors that can be used to tune the reactivity of these enzymes, either in an industrial, a laboratory, or a medicinal setting. In this review, we provide an overview of how these enzymes and inhibitors can be sought using techniques such as high-throughput natural product and combinatorial library screening, phage and mRNA display of (glyco)peptides, fluorescence-activated cell sorting, and metagenomics.
Collapse
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| |
Collapse
|
20
|
Goldbach L, Vermeulen BJA, Caner S, Liu M, Tysoe C, van Gijzel L, Yoshisada R, Trellet M, van Ingen H, Brayer GD, Bonvin AMJJ, Jongkees SAK. Folding Then Binding vs Folding Through Binding in Macrocyclic Peptide Inhibitors of Human Pancreatic α-Amylase. ACS Chem Biol 2019; 14:1751-1759. [PMID: 31241898 PMCID: PMC6700688 DOI: 10.1021/acschembio.9b00290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
De novo macrocyclic peptides, derived using selection technologies such as phage and mRNA display, present unique and unexpected solutions to challenging biological problems. This is due in part to their unusual folds, which are able to present side chains in ways not available to canonical structures such as α-helices and β-sheets. Despite much recent interest in these molecules, their folding and binding behavior remains poorly characterized. In this work, we present cocrystallization, docking, and solution NMR structures of three de novo macrocyclic peptides that all bind as competitive inhibitors with single-digit nanomolar Ki to the active site of human pancreatic α-amylase. We show that a short stably folded motif in one of these is nucleated by internal hydrophobic interactions in an otherwise dynamic conformation in solution. Comparison of the solution structures with a target-bound structure from docking indicates that stabilization of the bound conformation is provided through interactions with the target protein after binding. These three structures also reveal a surprising functional convergence to present a motif of a single arginine sandwiched between two aromatic residues in the interactions of the peptide with the key catalytic residues of the enzyme, despite little to no other structural homology. Our results suggest that intramolecular hydrophobic interactions are important for priming binding of small macrocyclic peptides to their target and that high rigidity is not necessary for high affinity.
Collapse
Affiliation(s)
- Leander Goldbach
- NMR
Spectroscopy Research Group and Computational Structural Biology, Bijvoet Center for Biomolecular Research, Science
Faculty, Utrecht University, 3512 Utrecht, The Netherlands
| | - Bram J. A. Vermeulen
- NMR
Spectroscopy Research Group and Computational Structural Biology, Bijvoet Center for Biomolecular Research, Science
Faculty, Utrecht University, 3512 Utrecht, The Netherlands
| | - Sami Caner
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, and Department of
Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Minglong Liu
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Christina Tysoe
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, and Department of
Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lieke van Gijzel
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ryoji Yoshisada
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mikael Trellet
- NMR
Spectroscopy Research Group and Computational Structural Biology, Bijvoet Center for Biomolecular Research, Science
Faculty, Utrecht University, 3512 Utrecht, The Netherlands
| | - Hugo van Ingen
- NMR
Spectroscopy Research Group and Computational Structural Biology, Bijvoet Center for Biomolecular Research, Science
Faculty, Utrecht University, 3512 Utrecht, The Netherlands
| | - Gary D. Brayer
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput
Biology, and Department of
Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alexandre M. J. J. Bonvin
- NMR
Spectroscopy Research Group and Computational Structural Biology, Bijvoet Center for Biomolecular Research, Science
Faculty, Utrecht University, 3512 Utrecht, The Netherlands
| | - Seino A. K. Jongkees
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
21
|
Hirose H, Hideshima T, Katoh T, Suga H. A Case Study on the Keap1 Interaction with Peptide Sequence Epitopes Selected by the Peptidomic mRNA Display. Chembiochem 2019; 20:2089-2100. [PMID: 31169361 DOI: 10.1002/cbic.201900039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Indexed: 11/08/2022]
Abstract
Many protein-protein and peptide-protein interactions (PPIs) play key roles in the regulation of biological functions, and therefore, the modulation of PPIs has become an attractive target of new drug development. Although a number of PPIs have already been identified, over 100 000 unknown PPIs are predicted to exist. To uncover such unknown PPIs, it is important to devise a conceptually distinct method from that of currently available methods. Herein, an mRNA display by using a total RNA library derived from various human tissues, which serves as a unique method to physically isolate peptide epitopes that potentially bind to a target protein of interest, is reported. In this study, selection was performed against Kelch-like ECH-associated protein (Keap1) as a model target protein, leading to a peptide epitope originating from astrotactin-1 (ASTN1). It turned out that this ASTN1 peptide was able to interact with Keap1 more strongly than that with a known peptide derived from Nrf2; a well-known, naturally occurring Keap1 binder. This case study demonstrates the applicability of peptidomic mRNA display for the rapid exploration of consensus binding peptide motifs and the potential for the discovery of unknown PPIs with other proteins of interest.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoki Hideshima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Chao L, Jongkees S. High‐Throughput Approaches in Carbohydrate‐Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| |
Collapse
|
23
|
De novo macrocyclic peptides that specifically modulate Lys48-linked ubiquitin chains. Nat Chem 2019; 11:644-652. [PMID: 31182821 DOI: 10.1038/s41557-019-0278-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
A promising approach in cancer therapy is to find ligands that directly bind ubiquitin (Ub) chains. However, finding molecules capable of tightly and specifically binding Ub chains is challenging given the range of Ub polymer lengths and linkages and their subtle structural differences. Here, we use total chemical synthesis of proteins to generate highly homogeneous Ub chains for screening against trillion-member macrocyclic peptide libraries (RaPID system). De novo cyclic peptides were found that can bind tightly and specifically to K48-linked Ub chains, confirmed by NMR studies. These cyclic peptides protected K48-linked Ub chains from deubiquitinating enzymes and prevented proteasomal degradation of Ub-tagged proteins. The cyclic peptides could enter cells, inhibit growth and induce programmed cell death, opening new opportunities for therapeutic intervention. This highly synthetic approach, with both protein target generation and cyclic peptide discovery performed in vitro, will make other elaborate post-translationally modified targets accessible for drug discovery.
Collapse
|
24
|
Kitamura T, Okuyama M, Takahashi D, Toshima K. 2-Phenylquinoline-Sugar Hybrids as Photoswitchable α-Glucosidase Inhibitors. Chem Asian J 2019; 14:1409-1412. [PMID: 30859722 DOI: 10.1002/asia.201900203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/06/2019] [Indexed: 11/11/2022]
Abstract
Purpose-designed 2-phenylquinoline (PQ)-sugar hybrids 1 and 2 were synthesized and evaluated for their photodegradation activities against an α-glucosidase target. The results indicated that PQ-mannose hybrid 2 selectively and effectively photodegraded α-glucosidase and significantly inhibited its enzymatic activity upon irradiation with long-wavelength UV light in the absence of any additives under neutral and aqueous conditions. Furthermore, 2 selectively and effectively inhibited α-glucosidase activity only with photo-irradiation even in complex cell lysate.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Mai Okuyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
25
|
Miranda Pedroso TFD, Bonamigo TR, da Silva J, Vasconcelos P, Félix JM, Cardoso CAL, Souza RIC, dos Santos AC, Volobuff CRF, Formagio ASN, Trichez VDK. Chemical constituents of Cochlospermum regium (Schrank) Pilg. root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in Wistar rats. Biomed Pharmacother 2019; 111:1383-1392. [DOI: 10.1016/j.biopha.2019.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
|
26
|
Nitsche C, Passioura T, Varava P, Mahawaththa MC, Leuthold MM, Klein CD, Suga H, Otting G. De Novo Discovery of Nonstandard Macrocyclic Peptides as Noncompetitive Inhibitors of the Zika Virus NS2B-NS3 Protease. ACS Med Chem Lett 2019; 10:168-174. [PMID: 30783498 PMCID: PMC6378662 DOI: 10.1021/acsmedchemlett.8b00535] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
The Zika virus presents a major public health concern due to severe fetal neurological disorders associated with infections in pregnant women. In addition to vaccine development, the discovery of selective antiviral drugs is essential to combat future epidemic Zika virus outbreaks. The Zika virus NS2B-NS3 protease, which performs replication-critical cleavages of the viral polyprotein, is a promising drug target. We report the first macrocyclic peptide-based inhibitors of the NS2B-NS3 protease, discovered de novo through in vitro display screening of a genetically reprogrammed library including noncanonical residues. Six compounds were selected, resynthesized, and isolated, all of which displayed affinities in the low nanomolar concentration range. Five compounds showed significant protease inhibition. Two of these were validated as hits with submicromolar inhibition constants and selectivity toward Zika over the related proteases from dengue and West Nile viruses. The compounds were characterized as noncompetitive inhibitors, suggesting allosteric inhibition.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Toby Passioura
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Paul Varava
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mithun C. Mahawaththa
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Mila M. Leuthold
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D. Klein
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gottfried Otting
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| |
Collapse
|
27
|
Katoh T, Suga H. Engineering Translation Components Improve Incorporation of Exotic Amino Acids. Int J Mol Sci 2019; 20:ijms20030522. [PMID: 30691159 PMCID: PMC6386890 DOI: 10.3390/ijms20030522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Methods of genetic code manipulation, such as nonsense codon suppression and genetic code reprogramming, have enabled the incorporation of various nonproteinogenic amino acids into the peptide nascent chain. However, the incorporation efficiency of such amino acids largely varies depending on their structural characteristics. For instance, l-α-amino acids with artificial, bulky side chains are poorer substrates for ribosomal incorporation into the nascent peptide chain, mainly owing to the lower affinity of their aminoacyl-tRNA toward elongation factor-thermo unstable (EF-Tu). Phosphorylated Ser and Tyr are also poorer substrates for the same reason; engineering EF-Tu has turned out to be effective in improving their incorporation efficiencies. On the other hand, exotic amino acids such as d-amino acids and β-amino acids are even poorer substrates owing to their low affinity to EF-Tu and poor compatibility to the ribosome active site. Moreover, their consecutive incorporation is extremely difficult. To solve these problems, the engineering of ribosomes and tRNAs has been executed, leading to successful but limited improvement of their incorporation efficiency. In this review, we comprehensively summarize recent attempts to engineer the translation systems, resulting in a significant improvement of the incorporation of exotic amino acids.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
28
|
Otero-Ramirez ME, Passioura T, Suga H. Structural Features and Binding Modes of Thioether-Cyclized Peptide Ligands. Biomedicines 2018; 6:biomedicines6040116. [PMID: 30551606 PMCID: PMC6316662 DOI: 10.3390/biomedicines6040116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
Macrocyclic peptides are an emerging class of bioactive compounds for therapeutic use. In part, this is because they are capable of high potency and excellent target affinity and selectivity. Over the last decade, several biochemical techniques have been developed for the identification of bioactive macrocyclic peptides, allowing for the rapid isolation of high affinity ligands to a target of interest. A common feature of these techniques is a general reliance on thioether formation to effect macrocyclization. Increasingly, the compounds identified using these approaches have been subjected to x-ray crystallographic analysis bound to their respective targets, providing detailed structural information about their conformation and mechanism of target binding. The present review provides an overview of the target bound thioether-closed macrocyclic peptide structures that have been obtained to date.
Collapse
Affiliation(s)
- Manuel E Otero-Ramirez
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
- JST CREST, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
| |
Collapse
|
29
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
30
|
Karmakar A, Basha M, Venkatesh Babu G, Botlagunta M, Malik NA, Rampulla R, Mathur A, Gupta AK. Tertiary-butoxycarbonyl (Boc) – A strategic group for N-protection/deprotection in the synthesis of various natural/unnatural N-unprotected aminoacid cyanomethyl esters. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Richardson SL, Dods KK, Abrigo NA, Iqbal ES, Hartman MC. In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands. Curr Opin Chem Biol 2018; 46:172-179. [PMID: 30077877 DOI: 10.1016/j.cbpa.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 01/26/2023]
Abstract
The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Kara K Dods
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Nicolas A Abrigo
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Matthew Ct Hartman
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA.
| |
Collapse
|
32
|
Tajima K, Katoh T, Suga H. Genetic code expansion via integration of redundant amino acid assignment by finely tuning tRNA pools. Curr Opin Chem Biol 2018; 46:212-218. [PMID: 30072241 DOI: 10.1016/j.cbpa.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
In all translation systems, the genetic code assigns codons to amino acids as building blocks of polypeptides, defining their chemical, structural and physiological properties. The canonical genetic code, however, utilizes only 20 proteinogenic amino acids redundantly encoded in 61 codons. In order to expand the building block repertoire, this redundancy was reduced by tuning composition of the transfer RNA (tRNA) mixture in vitro. Depletion of particular tRNAs from the total tRNA mixture or its reconstitution with in vitro-transcribed tRNASNNs (S = C or G, N = U, C, A or G) divided a codon box to encode two amino acids, expanding the repertoire to 23. The expanded genetic codes may benefit analysis of cellular regulatory pathways and drug screening.
Collapse
Affiliation(s)
- Kenya Tajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
33
|
A Designed Peptide Targets Two Types of Modifications of p53 with Anti-cancer Activity. Cell Chem Biol 2018; 25:761-774.e5. [DOI: 10.1016/j.chembiol.2018.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/17/2018] [Accepted: 03/22/2018] [Indexed: 01/21/2023]
|
34
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
35
|
Nishio K, Belle R, Katoh T, Kawamura A, Sengoku T, Hanada K, Ohsawa N, Shirouzu M, Yokoyama S, Suga H. Thioether Macrocyclic Peptides Selected against TET1 Compact Catalytic Domain Inhibit TET1 Catalytic Activity. Chembiochem 2018; 19:979-985. [PMID: 29665240 DOI: 10.1002/cbic.201800047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 12/29/2022]
Abstract
The ten-eleven translocation (TET) protein family, consisting of three isoforms (TET1/2/3), have been found in mammalian cells and have a crucial role in 5-methylcytosine demethylation in genomic DNA through the catalysis of oxidation reactions assisted by 2-oxoglutarate (2OG). DNA methylation/demethylation contributes to the regulation of gene expression at the transcriptional level, and recent studies have revealed that TET1 is highly elevated in malignant cells of various diseases and related to malignant alteration. TET1 inhibitors based on a scaffold of thioether macrocyclic peptides, which have been discovered by the random nonstandard peptide integrated discovery (RaPID) system, are reported. The affinity-based selection was performed against the TET1 compact catalytic domain (TET1CCD) to yield thioether macrocyclic peptides. These peptides exhibited inhibitory activity of the TET1 catalytic domain (TET1CD), with an IC50 value as low as 1.1 μm. One of the peptides, TiP1, was also able to inhibit TET1CD over TET2CD with tenfold selectivity, although it was likely to target the 2OG binding site; this provides a good starting point to develop more selective inhibitors.
Collapse
Affiliation(s)
- Kosuke Nishio
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Roman Belle
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akane Kawamura
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Welcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Toru Sengoku
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Kazuharu Hanada
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Noboru Ohsawa
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
36
|
Suga H. Max-Bergmann award lecture:A RaPID way to discover bioactive nonstandard peptides assisted by the flexizyme and FIT systems. J Pept Sci 2018; 24. [PMID: 29322648 DOI: 10.1002/psc.3055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022]
Abstract
Although general review articles should cover various people's achievements related to the subject, this review is privileged to describe the technology developed by Suga (and colleagues) as a recipient of the Max-Bergmann Medal in 2016. The technology consists of 3 unique and essential tools, flexizymes, FIT, and RaPID systems. This review describes the history of the development of each tool and discusses the recent applications of the RaPID system to discover potent nonstandard peptides for therapeutic and diagnostic uses.
Collapse
Affiliation(s)
- Hiroaki Suga
- Department of Chemistry, Graduate School of Science, Tokyo, The University of Tokyo, Japan
- JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Taylor RD, Rey-Carrizo M, Passioura T, Suga H. Identification of nonstandard macrocyclic peptide ligands through display screening. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 26:17-23. [PMID: 29249238 DOI: 10.1016/j.ddtec.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022]
Abstract
Techniques facilitating the synthesis and screening of very high diversity nonstandard macrocyclic peptide libraries have led to such compounds receiving increasing attention as potential drug candidates. Specifically, approaches which allow the use of non-proteinogenic amino acids are proving to be particularly effective, since they expand the accessible chemical space of the starting library and thus allow the identification of compounds with structural similarity to known drugs. This review focuses on mRNA display screening platforms for drug discovery and their combined use with genetic code reprogramming to identify novel macrocyclic peptides with high affinities for disease-related targets of interest.
Collapse
Affiliation(s)
- Rhys Dylan Taylor
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Matias Rey-Carrizo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
38
|
Yoshisada R, van Gijzel L, Jongkees SAK. Towards Tuneable Retaining Glycosidase-Inhibiting Peptides by Mimicry of a Plant Flavonol Warhead. Chembiochem 2017; 18:2333-2339. [PMID: 28984404 DOI: 10.1002/cbic.201700457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Indexed: 11/06/2022]
Abstract
Retaining glycosidases are an important class of enzymes involved in glycan degradation. To study better the role of specific enzymes in deglycosylation processes, and thereby the importance of particular glycosylation patterns, a set of potent inhibitors, each specific to a particular glycosidase, would be an invaluable toolkit. Towards this goal, we detail here a more in-depth study of a prototypical macrocyclic peptide inhibitor of the model retaining glycosidase human pancreatic α-amylase (HPA). Notably, incorporation of l-DOPA into this peptide affords an inhibitor of HPA with potency that is tenfold higher (Ki =480 pm) than that of the previously found consensus sequence. This represents a first successful step in converting a recently discovered natural-product-derived motif, already specific for the catalytic side-chain arrangement conserved in the active sites of retaining glycosidases, into a tuneable retaining glycosidase inhibition warhead.
Collapse
Affiliation(s)
- Ryoji Yoshisada
- Department of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Lieke van Gijzel
- Department of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Seino A K Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| |
Collapse
|
39
|
Exploring sequence space: harnessing chemical and biological diversity towards new peptide leads. Curr Opin Chem Biol 2017; 38:52-61. [DOI: 10.1016/j.cbpa.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022]
|