1
|
Finn LM, Cummer R, Castagner B, Keller BG. Allosterically switchable network orients β-flap in Clostridioides difficile toxins. Proc Natl Acad Sci U S A 2025; 122:e2419263122. [PMID: 40172960 PMCID: PMC12002228 DOI: 10.1073/pnas.2419263122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
Allosteric proteins exhibit a functional response upon ligand binding far from the active site. Clostridioides difficile toxins use allosteric binding by the endogenous cofactor myo-inositol hexakisphosphate to orchestrate self-cleavage from within the target cell. This binding event induces a conformational shift, primarily effecting a lever-like β-flap region, with two known orientations. We uncovered a mechanism for this allosteric transition using extensive atomistic molecular dynamics simulations and computational and experimental mutagenesis. The mechanism relies on a switchable interaction network. The most prominent interaction pair is K600-E743, with K600 interactions explaining ∼70% of the allosteric effect. Rather than gradually morphing between two end states, the interaction network adopts two mutually exclusive configurations in the active and inactive state. Similar switchable networks may explain allostery more broadly. This mechanism in particular could aid in drug development targeting the C. difficile toxins autoproteolysis.
Collapse
Affiliation(s)
- Lauren M. Finn
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin14195, Germany
| | - Rebecca Cummer
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Bettina G. Keller
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin14195, Germany
| |
Collapse
|
2
|
Cummer R, Bhatt G, Finn LM, Keller BG, Nagar B, Castagner B. Thiophosphate bioisosteres of inositol hexakisphosphate enhance binding affinity and residence time on bacterial virulence factors. RSC Chem Biol 2025:d4cb00228h. [PMID: 40190842 PMCID: PMC11970527 DOI: 10.1039/d4cb00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Inositol phosphates are essential for mammalian cell signalling with critical roles in cellular processes. The fully phosphorylated inositol phosphate, myo-inositol hexakisphosphate (IP6), modulates numerous eukaryotic proteins and bacterial virulence factors. It has been suggested that the high charge density of IP6 causes restructuring of virulence factors in mammalian cells, activating their enzymatic activity. IP6 is challenging to study due to its phytase instability and propensity to precipitate. Here we suggest that the thiophosphate bioisostere, myo-inositol hexakisthiophosphate (IT6), will mitigate these issues, as thiophosphate substitution has been found to be phytase resistant and improve solubility. Assessment of the chemical properties of IT6 has indeed validated these characteristics. In addition, we performed biophysical characterization of IT6 binding to the virulence factors Salmonella enterica serovar Typhimurium AvrA, Vibrio parahaemolyticus VopA, and Clostridioides difficile TcdB. Our data show that the higher charge density of IT6 increased its binding affinity and residence time on the proteins, which improved stabilization of the bound-state. IT6 is a valuable tool for structural biology research and the described biophysical characteristics of thiophosphate substitution are of value in medicinal chemistry.
Collapse
Affiliation(s)
- Rebecca Cummer
- Department of Pharmacology and Therapeutics, McGill University Montréal Québec H3G 1Y6 Canada +514-398-2045 +514-398-2181
| | - Garvit Bhatt
- Department of Pharmacology and Therapeutics, McGill University Montréal Québec H3G 1Y6 Canada +514-398-2045 +514-398-2181
- Department of Biochemistry, McGill University Montréal Québec H3G 1Y6 Canada
| | - Lauren M Finn
- Department of Biology, Chemistry, Pharmacy, Freie Universität Arnimallee 22 14195 Berlin Germany
| | - Bettina G Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Arnimallee 22 14195 Berlin Germany
| | - Bhushan Nagar
- Department of Biochemistry, McGill University Montréal Québec H3G 1Y6 Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, McGill University Montréal Québec H3G 1Y6 Canada +514-398-2045 +514-398-2181
| |
Collapse
|
3
|
Cummer R, Grosjean F, Bolteau R, Vasegh SE, Veyron S, Keogh L, Trempe JF, Castagner B. Structure-Activity Relationship of Inositol Thiophosphate Analogs as Allosteric Activators of Clostridioides difficile Toxin B. J Med Chem 2024; 67:16576-16597. [PMID: 39254660 DOI: 10.1021/acs.jmedchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Clostridioides difficile is a bacterium that causes life-threatening intestinal infections. Infection symptoms are mediated by a toxin secreted by the bacterium. Toxin pathogenesis is modulated by the intracellular molecule, inositol-hexakisphosphate (IP6). IP6 binds to a cysteine protease domain (CPD) on the toxin, inducing autoproteolysis, which liberates a virulence factor in the cell cytosol. We developed second-generation IP6 analogs designed to induce autoproteolysis in the gut lumen, prior to toxin uptake, circumventing pathogenesis. We synthesized a panel of thiophosphate-/sulfate-containing IP6 analogs and characterized their toxin binding affinity, autoproteolysis induction, and cation interactions. Our top candidate was soluble in extracellular cation concentrations, unlike IP6. The IP6 analogs were more negatively charged than IP6, which improved affinity and stabilization of the CPD, enhancing toxin autoproteolysis. Our data illustrate the optimization of IP6 with thiophosphate biomimetic which are more capable of inducing toxin autoproteolysis than the native ligand, warranting further studies in vivo.
Collapse
Affiliation(s)
- Rebecca Cummer
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Félix Grosjean
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Raphaël Bolteau
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Seyed Ehsan Vasegh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Simon Veyron
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Liam Keogh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| |
Collapse
|
4
|
Ouyang Z, Zhao M, Li J, Zhang Y, Zhao J. Cyclic diguanylate differentially regulates the expression of virulence factors and pathogenesis-related phenotypes in Clostridioides difficile. Microbiol Res 2024; 286:127811. [PMID: 38909416 DOI: 10.1016/j.micres.2024.127811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Clostridioides difficile infection (CDI) caused by toxigenic C. difficile is the leading cause of antimicrobial and healthcare-associated diarrhea. The pathogenicity of C. difficile relies on the synergistic effect of multiple virulence factors, including spores, flagella, type IV pili (T4P), toxins, and biofilm. Spores enable survival and transmission of C. difficile, while adhesion factors such as flagella and T4P allow C. difficile to colonize and persist in the host intestine. Subsequently, C. difficile produces the toxins TcdA and TcdB, causing pseudomembranous colitis and other C. difficile-associated diseases; adhesion factors bind to the extracellular matrix to form biofilm, allowing C. difficile to evade drug and immune system attack and cause recurrent infection. Cyclic diguanylate (c-di-GMP) is a near-ubiquitous second messenger that extensively regulates morphology, the expression of virulence factors, and multiple physiological processes in C. difficile. In this review, we summarize current knowledge of how c-di-GMP differentially regulates the expression of virulence factors and pathogenesis-related phenotypes in C. difficile. We highlight that C. difficile spore formation and expression of toxin and flagella genes are inhibited at high intracellular levels of c-di-GMP, while T4P biosynthesis, cell aggregation, and biofilm formation are induced. Recent studies have enhanced our understanding of the c-di-GMP signaling networks in C. difficile and provided insights for the development of c-di-GMP-dependent strategies against CDI.
Collapse
Affiliation(s)
- Zirou Ouyang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiayiren Li
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yulian Zhang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Chen L, Khan H, Tan L, Li X, Zhang G, Im YJ. Structural basis of the activation of MARTX cysteine protease domain from Vibrio vulnificus. PLoS One 2024; 19:e0307512. [PMID: 39093838 PMCID: PMC11296635 DOI: 10.1371/journal.pone.0307512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The multifunctional autoprocessing repeat-in-toxin (MARTX) toxin is the primary virulence factor of Vibrio vulnificus displaying cytotoxic and hemolytic properties. The cysteine protease domain (CPD) is responsible for activating the MARTX toxin by cleaving the toxin precursor and releasing the mature toxin fragments. To investigate the structural determinants for inositol hexakisphosphate (InsP6)-mediated activation of the CPD, we determined the crystal structures of unprocessed and β-flap truncated MARTX CPDs of Vibrio vulnificus strain MO6-24/O in complex with InsP6 at 1.3 and 2.2Å resolution, respectively. The CPD displays a conserved domain with a central seven-stranded β-sheet flanked by three α-helices. The scissile bond Leu3587-Ala3588 is bound in the catalytic site of the InsP6-loaded form of the Cys3727Ala mutant. InsP6 interacts with the conserved basic cleft and the β-flap inducing the active conformation of catalytic residues. The β-flap of the post-CPD is flexible in the InsP6-unbound state. The structure of the CPD Δβ-flap showed an inactive conformation of the catalytic residues due to the absence of interaction between the active site and the β-flap. This study confirms the InsP6-mediated activation of the MARTX CPDs in which InsP6-binding induces conformational changes of the catalytic residues and the β-flap that holds the N terminus of the CPD in the active site, facilitating hydrolysis of the scissile bond.
Collapse
Affiliation(s)
- Lin Chen
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Haider Khan
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Lingchen Tan
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Xiaojie Li
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Gongchun Zhang
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Buratta S, Urbanelli L, Pellegrino RM, Alabed HBR, Latella R, Cerrotti G, Emiliani C, Bassotti G, Spaterna A, Marconi P, Fettucciari K. PhosphoLipidome Alteration Induced by Clostridioides difficile Toxin B in Enteric Glial Cells. Cells 2024; 13:1103. [PMID: 38994956 PMCID: PMC11240607 DOI: 10.3390/cells13131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The C. difficile pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling. Despite the role played by lipids in host processes activated by pathogens, to counter infection and/or induce cell death, to date no studies have investigated lipid changes induced by TcdB/TcdA. Here, we evaluated the modification of lipid composition in our in vitro model of TcdB infection. Apoptosis, cell cycle, cell viability, and lipidomic profiles were evaluated in EGCs treated for 24 h with two concentrations of TcdB (0.1 ng/mL; 10 ng/mL). In EGCs treated with the highest concentration of TcdB, not only an increased content of total lipids was observed, but also lipidome changes, allowing the separation of TcdB-treated cells and controls into different clusters. The statistical analyses also allowed us to ascertain which lipid classes and lipid molecular species determine the clusterization. Changes in lipid species containing inositol as polar head and plasmalogen phosphatidylethanolamine emerged as key indicators of altered lipid metabolism in TcdB-treated EGCs. These results not only provide a picture of the phospholipid profile changes but also give information regarding the lipid metabolism pathways altered by TcdB, and this might represent an important step for developing strategies against C. difficile infection.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (S.B.); (L.U.); (R.M.P.); (H.B.R.A.); (R.L.); (G.C.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
- Santa Maria Della Misericordia Hospital, Gastroenterology & Hepatology Unit, Piazzale Menghini 1, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Pierfrancesco Marconi
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| | - Katia Fettucciari
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
7
|
Lin S, Song Y, Sun Y, Lin W, Yu G, Liao X, Yang Q. Morpholine-modified Ru-based agents with multiple antibacterial mechanisms as metalloantibiotic candidates against Staphylococcus aureus infection. RSC Adv 2024; 14:20130-20144. [PMID: 38915333 PMCID: PMC11194541 DOI: 10.1039/d4ra02667e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Multidrug-resistant bacteria resulting from the abuse and overuse of antibiotics have become a huge crisis in global public health security. Therefore, it is urgently needed to develop new antibacterial drugs with unique mechanisms of action. As a versatile moiety, morpholine has been widely employed to enhance the potency of numerous bioactive molecules. In this study, a series of ruthenium-based antibacterial agents modified with the morpholine moiety were designed and characterized, aiming to obtain a promising metalloantibiotic with a multitarget mechanism. Antibacterial activity screening demonstrated that the most active complex Ru(ii)-3 exhibited the strongest potency against Staphylococcus aureus (S. aureus) with an MIC value of only 0.78 μg mL-1, which is better than most clinically used antibiotics. Notably, Ru(ii)-3 not only possessed excellent bactericidal efficacy, but could also overcome bacterial resistance. Importantly, Ru(ii)-3 very efficiently removed biofilms produced by bacteria, inhibited the secretion of bacterial exotoxins, and enhanced the activity of many existing antibiotics. The results of mechanism studies confirmed that Ru(ii)-3 could destroy the bacterial membrane and induce ROS production in bacteria. Furthermore, animal infection models confirmed that Ru(ii)-3 showed significant anti-infective activity in vivo. Overall, this work demonstrated that a morpholine-modified ruthenium-based agent is a promising antibiotic candidate in tackling the crisis of drug-resistant bacteria.
Collapse
Affiliation(s)
- Shijie Lin
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou 570311 China
| | - Yun Song
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Yajuan Sun
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Wenjing Lin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Guangying Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University Nanchang 330013 China
| | - Qiang Yang
- Department of Clinical Pharmacy, Hainan Cancer Hospital Haikou 570100 China
| |
Collapse
|
8
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
9
|
Wang J, Song Y, Huang Z, Lin W, Yu G, Xiong Y, Jiang G, Tan Y, Wang J, Liao X. Coupling a Virulence-Targeting Moiety with Ru-Based AMP Mimics Efficiently Improved Its Anti-Infective Potency and Therapeutic Index. J Med Chem 2023; 66:13304-13318. [PMID: 37704628 DOI: 10.1021/acs.jmedchem.3c01282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The surge of antibiotic resistance in Staphylococcus aureus calls for novel drugs that attack new targets. Developing antimicrobial peptides (AMPs) or antivirulence agents (AvAs) is a promising strategy to tackle this challenge. However, AMPs, which kill bacteria by disrupting cell membranes, suffer from low stability and high synthesis cost, while AvAs, which inhibit toxin secretion, have relatively poor bactericidal activity. Here, to address their respective shortcomings, we combined these two different antibacterial activities on the same molecular scaffold and developed a Ru-based metalloantibiotic, termed Ru1. Notably, Ru1 exerted remarkable bactericidal activity (MICS = 460 nM) and attenuated bacterial virulence as well. Mechanistic studies demonstrated that Ru1 had two independent targets: CcpA and bacterial membrane integrity. Based on its dual mechanism of action, Ru1 effectively overcame S. aureus resistance and showed high efficacy in a mouse infection model against S. aureus. This study provides a promising approach to confronting bacterial infections.
Collapse
Affiliation(s)
- Jing Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yun Song
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ziying Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wenjing Lin
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Guangying Yu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
10
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
11
|
Wang W, Wang Y, Lu Y, Tian X, Chen S, Wu B, Du J, Xiao Y, Cai W. Inositol hexaphosphate promotes intestinal adaptation in short bowel syndrome via an HDAC3-mediated epigenetic pathway. Food Nutr Res 2023; 67:8694. [PMID: 36794012 PMCID: PMC9899046 DOI: 10.29219/fnr.v67.8694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Short bowel syndrome (SBS) has high morbidity and mortality rates, and promoting intestinal adaptation of the residual intestine is a critical treatment. Dietary inositol hexaphosphate (IP6) plays an important role in maintaining intestinal homeostasis, but its effect on SBS remains unclear. This study aimed at investigating the effect of IP6 on SBS and clarified its underlying mechanism. Methods Forty male Sprague-Dawley rats (3-week-old) were randomly assigned into four groups (Sham, Sham + IP6, SBS, and SBS + IP6 groups). Rats were fed standard pelleted rat chow and underwent resection of 75% of the small intestine after 1 week of acclimation. They received 1 mL IP6 treatment (2 mg/g) or sterile water daily for 13 days by gavage. Intestinal length, levels of inositol 1,4,5-trisphosphate (IP3), histone deacetylase 3 (HDAC3) activity, and proliferation of intestinal epithelial cell-6 (IEC-6) were detected. Results IP6 treatment increased the length of the residual intestine in rats with SBS. Furthermore, IP6 treatment caused an increase in body weight, intestinal mucosal weight, and IEC proliferation, and a decrease in intestinal permeability. IP6 treatment led to higher levels of IP3 in feces and serum, and higher HDAC3 activity of the intestine. Interestingly, HDAC3 activity was positively correlated with the levels of IP3 in feces (r = 0.49, P = 0.01) and serum (r = 0.44, P = 0.03). Consistently, IP3 treatment promoted the proliferation of IEC-6 cells by increasing HDAC3 activity in vitro. IP3 regulated the Forkhead box O3 (FOXO3)/Cyclin D1 (CCND1) signaling pathway. Conclusion IP6 treatment promotes intestinal adaptation in rats with SBS. IP6 is metabolized to IP3 to increase HDAC3 activity to regulate the FOXO3/CCND1 signaling pathway and may represent a potential therapeutic approach for patients with SBS.
Collapse
Affiliation(s)
- Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Chen
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wu
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Du
- Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,Yongtao Xiao Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, Shanghai, China.
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Institu of Pediatric Research, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China,Wei Cai Department of Pediatric Surgery, Xin Hua Hospital, Shanghai Jiao Tong University, No. 1665, Kong Jiang Road, 200092 Shanghai, China.
| |
Collapse
|
12
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
13
|
Abstract
![]()
The paradigm of antivirulence
therapy dictates that bacterial pathogens
are specifically disarmed but not killed by neutralizing their virulence
factors. Clearance of the invading pathogen by the immune system is
promoted. As compared to antibiotics, the pathogen-selective antivirulence
drugs hold promise to minimize collateral damage to the beneficial
microbiome. Also, selective pressure for resistance is expected to
be lower because bacterial viability is not directly affected. Antivirulence
drugs are being developed for stand-alone prophylactic and therapeutic
treatments but also for combinatorial use with antibiotics. This Review
focuses on drug modalities that target bacterial exotoxins after the
secretion or release-upon-lysis. Exotoxins have a significant and
sometimes the primary role as the disease-causing virulence factor,
and thereby they are attractive targets for drug development. We describe
the key pre-clinical and clinical trial data that have led to the
approval of currently used exotoxin-targeted drugs, namely the monoclonal
antibodies bezlotoxumab (toxin B/TcdB, Clostridioides difficile), raxibacumab (anthrax toxin, Bacillus anthracis), and obiltoxaximab (anthrax toxin, Bacillus anthracis), but also to challenges with some of the promising leads. We also
highlight the recent developments in pre-clinical research sector
to develop exotoxin-targeted drug modalities, i.e., monoclonal antibodies,
antibody fragments, antibody mimetics, receptor analogs, neutralizing
scaffolds, dominant-negative mutants, and small molecules. We describe
how these exotoxin-targeted drug modalities work with high-resolution
structural knowledge and highlight their advantages and disadvantages
as antibiotic alternatives.
Collapse
Affiliation(s)
- Moona Sakari
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Arttu Laisi
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|
14
|
Lev S, Bowring B, Desmarini D, Djordjevic JT. Inositol polyphosphate-protein interactions: Implications for microbial pathogenicity. Cell Microbiol 2021; 23:e13325. [PMID: 33721399 PMCID: PMC9286782 DOI: 10.1111/cmi.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Inositol polyphosphates (IPs) and inositol pyrophosphates (PP-IPs) regulate diverse cellular processes in eukaryotic cells. IPs and PP-IPs are highly negatively charged and exert their biological effects by interacting with specific protein targets. Studies performed predominantly in mammalian cells and model yeasts have shown that IPs and PP-IPs modulate target function through allosteric regulation, by promoting intra- and intermolecular stabilization and, in the case of PP-IPs, by donating a phosphate from their pyrophosphate (PP) group to the target protein. Technological advances in genetics have extended studies of IP function to microbial pathogens and demonstrated that disrupting PP-IP biosynthesis and PP-IP-protein interaction has a profound impact on pathogenicity. This review summarises the complexity of IP-mediated regulation in eukaryotes, including microbial pathogens. It also highlights examples of poor conservation of IP-protein interaction outcome despite the presence of conserved IP-binding domains in eukaryotic proteomes.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Kletzmayr A, Ivarsson ME, Leroux JC. Investigational Therapies for Primary Hyperoxaluria. Bioconjug Chem 2020; 31:1696-1707. [PMID: 32539351 DOI: 10.1021/acs.bioconjchem.0c00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent years have brought exciting new insights in the field of primary hyperoxaluria (PH), both on a basic research level as well as through the progress of novel therapeutics in clinical development. To date, very few supportive measures are available for patients suffering from PH, which, together with the severity of the disorder, make disease management challenging. Basic and clinical research and development efforts range from correcting the underlying gene mutations, preventing calcium oxalate crystal-induced kidney damage, to the administration of probiotics favoring the intestinal secretion of excess oxalate. In this review, current advances in the development of those strategies are presented and discussed.
Collapse
Affiliation(s)
- Anna Kletzmayr
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Kletzmayr A, Mulay SR, Motrapu M, Luo Z, Anders HJ, Ivarsson ME, Leroux JC. Inhibitors of Calcium Oxalate Crystallization for the Treatment of Oxalate Nephropathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903337. [PMID: 32328427 PMCID: PMC7175250 DOI: 10.1002/advs.201903337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Indexed: 05/06/2023]
Abstract
Calcium oxalate (CaOx) crystal-induced nephropathies comprise a range of kidney disorders, for which there are no efficient pharmacological treatments. Although CaOx crystallization inhibitors have been suggested as a therapeutic modality already decades ago, limited progress has been made in the discovery of potent molecules with efficacy in animal disease models. Herein, an image-based machine learning approach to systematically screen chemically modified myo-inositol hexakisphosphate (IP6) analogues is utilized, which enables the identification of a highly active divalent inositol phosphate molecule. To date, this is the first molecule shown to completely inhibit the crystallization process in the nanomolar range, reduce crystal-cell interactions, thereby preventing CaOx-induced transcriptomic changes, and decrease renal CaOx deposition and kidney injury in a mouse model of hyperoxaluria. In conclusion, IP6 analogues based on such a scaffold may represent a new treatment option for CaOx nephropathies.
Collapse
Affiliation(s)
- Anna Kletzmayr
- Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Shrikant R Mulay
- Division of Nephrology Department of Medicine IV University Hospital LMU Munich 80336 Munich Germany
| | - Manga Motrapu
- Division of Nephrology Department of Medicine IV University Hospital LMU Munich 80336 Munich Germany
| | - Zhi Luo
- Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Hans-Joachim Anders
- Division of Nephrology Department of Medicine IV University Hospital LMU Munich 80336 Munich Germany
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
17
|
Schantl AE, Verhulst A, Neven E, Behets GJ, D'Haese PC, Maillard M, Mordasini D, Phan O, Burnier M, Spaggiari D, Decosterd LA, MacAskill MG, Alcaide-Corral CJ, Tavares AAS, Newby DE, Beindl VC, Maj R, Labarre A, Hegde C, Castagner B, Ivarsson ME, Leroux JC. Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers. Nat Commun 2020; 11:721. [PMID: 32024848 PMCID: PMC7002685 DOI: 10.1038/s41467-019-14091-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG2)2-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG2)2-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG2)2-IP4 disrupts the nucleation and growth of pathological calcification.
Collapse
Affiliation(s)
- Antonia E Schantl
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Anja Verhulst
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Geert J Behets
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Marc Maillard
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - David Mordasini
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Phan
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Dany Spaggiari
- Division of Clinical Pharmacology, Lausanne University Hospital, Lausanne, Switzerland
| | - Laurent A Decosterd
- Division of Clinical Pharmacology, Lausanne University Hospital, Lausanne, Switzerland
| | - Mark G MacAskill
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Carlos J Alcaide-Corral
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University-BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Victoria C Beindl
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Anne Labarre
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Chrismita Hegde
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Giau VV, Lee H, An SSA, Hulme J. Recent advances in the treatment of C. difficile using biotherapeutic agents. Infect Drug Resist 2019; 12:1597-1615. [PMID: 31354309 PMCID: PMC6579870 DOI: 10.2147/idr.s207572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile (C. difficile) is rapidly becoming one of the most prevalent health care–associated bacterial infections in the developed world. The emergence of new, more virulent strains has led to greater morbidity and resistance to standard therapies. The bacterium is readily transmitted between people where it can asymptomatically colonize the gut environment, and clinical manifestations ranging from frequent watery diarrhea to toxic megacolon can arise depending on the age of the individual or their state of gut dysbiosis. Several inexpensive approaches are shown to be effective against virulent C. difficile in research settings such as probiotics, fecal microbiota transfer and immunotherapies. This review aims to highlight the current advantages and limitations of the aforementioned approaches with an emphasis on recent studies.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - Hyon Lee
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - John Hulme
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|