1
|
Luteijn MJ, Bhaskar V, Trojer D, Schürz M, Mahboubi H, Handl C, Pizzato N, Pfeifer M, Dafinca R, Voshol H, Giorgetti E, Manneville C, Garnier IPM, Müller M, Zeng F, Buntin K, Markwalder R, Schröder H, Weiler J, Khar D, Schuhmann T, Groot-Kormelink PJ, Keller CG, Farmer P, MacKay A, Beibel M, Roma G, D’Ario G, Merkl C, Schebesta M, Hild M, Elwood F, Vahsen BF, Ripin N, Clery A, Allain F, Labow M, Gabriel D, Chao JA, Talbot K, Nash M, Hunziker J, Meisner-Kober NC. High-throughput screen of 100 000 small molecules in C9ORF72 ALS neurons identifies spliceosome modulators that mobilize G4C2 repeat RNA into nuclear export and repeat associated non-canonical translation. Nucleic Acids Res 2025; 53:gkaf253. [PMID: 40207633 PMCID: PMC11983130 DOI: 10.1093/nar/gkaf253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
An intronic G4C2 repeat expansion in the C9ORF72 gene is the major known cause for Amyotrophic Lateral Sclerosis (ALS), with current evidence for both, loss of function and pathological gain of function disease mechanisms. We screened 96 200 small molecules in C9ORF72 patient iPS neurons for modulation of nuclear G4C2 RNA foci and identified 82 validated hits, including the Brd4 inhibitor JQ1 as well as novel analogs of Spliceostatin-A, a known modulator of SF3B1, the branch point binding protein of the U2-snRNP. Spliceosome modulation by these SF3B1 targeted compounds recruits SRSF1 to nuclear G4C2 RNA, mobilizing it from RNA foci into nucleocytoplasmic export. This leads to increased repeat-associated non-canonical (RAN) translation and ultimately, enhanced cell toxicity. Our data (i) provide a new pharmacological entry point with novel as well as known, publicly available tool compounds for dissection of C9ORF72 pathobiology in C9ORF72 ALS models, (ii) allowing to differentially modulate RNA foci versus RAN translation, and (iii) suggest that therapeutic RNA foci elimination strategies warrant caution due to a potential storage function, counteracting translation into toxic dipeptide repeat polyproteins. Instead, our data support modulation of nuclear export via SRSF1 or SR protein kinases as possible targets for future pharmacological drug discovery.
Collapse
Affiliation(s)
- Maartje J Luteijn
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Varun Bhaskar
- Friedrich Miescher Institute for Biomedical Research, Department Genomic Regulation, Basel, 4056, Switzerland
| | - Dominic Trojer
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Melanie Schürz
- Paris-Lodron University of Salzburg, Department of Biosciences and Medical Biology,, Salzburg, 5020,Austria
- Ludwig Boltzmann Institute for Nanovesicular Precision Medicine at the Paris Lodron University Salzburg, 5020, Austria
| | - Hicham Mahboubi
- Friedrich Miescher Institute for Biomedical Research, Department Genomic Regulation, Basel, 4056, Switzerland
| | - Cornelia Handl
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Nicolas Pizzato
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Martin Pfeifer
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Ruxandra Dafinca
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences, Oxford, OX3 9DU, United Kingdom
| | - Hans Voshol
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Elisa Giorgetti
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Carole Manneville
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Isabelle P M Garnier
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Matthias Müller
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Fanning Zeng
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Kathrin Buntin
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Roger Markwalder
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Harald Schröder
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Jan Weiler
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Dora Khar
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Tim Schuhmann
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Paul J Groot-Kormelink
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Caroline Gubser Keller
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Pierre Farmer
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Angela MacKay
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Giovanni D’Ario
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Claudia Merkl
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Michael Schebesta
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Marc Hild
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Fiona Elwood
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Björn F Vahsen
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Nina Ripin
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Antoine Clery
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Frederic Allain
- ETH Zürich, Department of Biology, Institute f. Molekularbiol.u.Biophysik, Zürich, 8093, Switzerland
| | - Mark Labow
- Novartis Institutes for Biomedical Research, Department Discovery Sciences, Cambridge, MA02139, United States
| | - Daniela Gabriel
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Department Genomic Regulation, Basel, 4056, Switzerland
| | - Kevin Talbot
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Neurosciences, Oxford, OX3 9DU, United Kingdom
| | - Mark Nash
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Jürg Hunziker
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Nicole C Meisner-Kober
- Novartis Institutes for Biomedical Research, Department Global Discovery Chemistry, Basel, 4056, Switzerland
- Paris-Lodron University of Salzburg, Department of Biosciences and Medical Biology,, Salzburg, 5020,Austria
- Ludwig Boltzmann Institute for Nanovesicular Precision Medicine at the Paris Lodron University Salzburg, 5020, Austria
| |
Collapse
|
2
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
3
|
Chen M, Guo X, Guo J, Shi C, Wu Y, Chen L, Mao R, Fan Y. Cytoplasmic Accumulation of Histones Induced by BET Inhibition Protects Cells from C9orf72 Poly(PR)-Induced Cell Death. Adv Biol (Weinh) 2024; 8:e2300334. [PMID: 38213020 DOI: 10.1002/adbi.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.
Collapse
Affiliation(s)
- Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiaohong Guo
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jinjing Guo
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yuanyuan Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
| | - Liuting Chen
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, 226001, China
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, 226001, China
| |
Collapse
|
4
|
Zhang W, Zhang M, Ma L, Jariyasakulroj S, Chang Q, Lin Z, Lu Z, Chen JF. Recapitulating and reversing human brain ribosomopathy defects via the maladaptive integrated stress response. SCIENCE ADVANCES 2024; 10:eadk1034. [PMID: 38306425 PMCID: PMC10836730 DOI: 10.1126/sciadv.adk1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Animal or human models recapitulating brain ribosomopathies are incomplete, hampering development of urgently needed therapies. Here, we generated genetic mouse and human cerebral organoid models of brain ribosomopathies, caused by mutations in small nucleolar RNA (snoRNA) SNORD118. Both models exhibited protein synthesis loss, proteotoxic stress, and p53 activation and led to decreased proliferation and increased death of neural progenitor cells (NPCs), resulting in brain growth retardation, recapitulating features in human patients. Loss of SNORD118 function resulted in an aberrant upregulation of p-eIF2α, the mediator of integrated stress response (ISR). Using human iPSC cell-based screen, we identified small-molecule 2BAct, an ISR inhibitor, which potently reverses mutant NPC defects. Targeting ISR by 2BAct mitigated ribosomopathy defects in both cerebral organoid and mouse models. Thus, our SNORD118 mutant organoid and mice recapitulate human brain ribosomopathies and cross-validate maladaptive ISR as a key disease-driving mechanism, pointing to a therapeutic intervention strategy.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ziying Lin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci 2023; 48:274-287. [PMID: 36229381 DOI: 10.1016/j.tibs.2022.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The nucleolus is the site of ribosome biogenesis, one of the most resource-intensive processes in eukaryotic cells. Accordingly, nucleolar morphology and activity are highly responsive to growth signaling and nucleolar insults which are collectively included in the actively evolving concept of nucleolar stress. Importantly, nucleolar alterations are a prominent feature of multiple human pathologies, including cancer and neurodegeneration, as well as being associated with aging. The past decades have seen numerous attempts to isolate compounds targeting different facets of nucleolar activity. We provide an overview of therapeutic opportunities for targeting nucleoli in different pathologies and currently available therapies.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
6
|
Ramic M, Andrade NS, Rybin MJ, Esanov R, Wahlestedt C, Benatar M, Zeier Z. Epigenetic Small Molecules Rescue Nucleocytoplasmic Transport and DNA Damage Phenotypes in C9ORF72 ALS/FTD. Brain Sci 2021; 11:brainsci11111543. [PMID: 34827542 PMCID: PMC8616043 DOI: 10.3390/brainsci11111543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with available treatments only marginally slowing progression or improving survival. A hexanucleotide repeat expansion mutation in the C9ORF72 gene is the most commonly known genetic cause of both sporadic and familial cases of ALS and frontotemporal dementia (FTD). The C9ORF72 expansion mutation produces five dipeptide repeat proteins (DPRs), and while the mechanistic determinants of DPR-mediated neurotoxicity remain incompletely understood, evidence suggests that disruption of nucleocytoplasmic transport and increased DNA damage contributes to pathology. Therefore, characterizing these disturbances and determining the relative contribution of different DPRs is needed to facilitate the development of novel therapeutics for C9ALS/FTD. To this end, we generated a series of nucleocytoplasmic transport “biosensors”, composed of the green fluorescent protein (GFP), fused to different classes of nuclear localization signals (NLSs) and nuclear export signals (NESs). Using these biosensors in conjunction with automated microscopy, we investigated the role of the three most neurotoxic DPRs (PR, GR, and GA) on seven nuclear import and two export pathways. In addition to other DPRs, we found that PR had pronounced inhibitory effects on the classical nuclear export pathway and several nuclear import pathways. To identify compounds capable of counteracting the effects of PR on nucleocytoplasmic transport, we developed a nucleocytoplasmic transport assay and screened several commercially available compound libraries, totaling 2714 compounds. In addition to restoring nucleocytoplasmic transport efficiencies, hits from the screen also counteract the cytotoxic effects of PR. Selected hits were subsequently tested for their ability to rescue another C9ALS/FTD phenotype—persistent DNA double strand breakage. Overall, we found that DPRs disrupt multiple nucleocytoplasmic transport pathways and we identified small molecules that counteract these effects—resulting in increased viability of PR-expressing cells and decreased DNA damage markers in patient-derived motor neurons. Several HDAC inhibitors were validated as hits, supporting previous studies that show that HDAC inhibitors confer therapeutic effects in neurodegenerative models.
Collapse
Affiliation(s)
- Melina Ramic
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Nadja S. Andrade
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Matthew J. Rybin
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Rustam Esanov
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, FL 33136, USA;
| | - Zane Zeier
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
- Correspondence: ; Tel.: +1-305-243-1367
| |
Collapse
|
7
|
The nuclear ubiquitin ligase adaptor SPOP is a conserved regulator of C9orf72 dipeptide toxicity. Proc Natl Acad Sci U S A 2021; 118:2104664118. [PMID: 34593637 DOI: 10.1073/pnas.2104664118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
A hexanucleotide repeat expansion in the C9orf72 gene is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Unconventional translation of the C9orf72 repeat produces dipeptide repeat proteins (DPRs). Previously, we showed that the DPRs PR50 and GR50 are highly toxic when expressed in Caenorhabditis elegans, and this toxicity depends on nuclear localization of the DPR. In an unbiased genome-wide RNA interference (RNAi) screen for suppressors of PR50 toxicity, we identified 12 genes that consistently suppressed either the developmental arrest and/or paralysis phenotype evoked by PR50 expression. All of these genes have vertebrate homologs, and 7 of 12 contain predicted nuclear localization signals. One of these genes was spop-1, the C. elegans homolog of SPOP, a nuclear localized E3 ubiquitin ligase adaptor only found in metazoans. SPOP is also required for GR50 toxicity and functions in a genetic pathway that includes cul-3, which is the canonical E3 ligase partner for SPOP Genetic or pharmacological inhibition of SPOP in mammalian primary spinal cord motor neurons suppressed DPR toxicity without affecting DPR expression levels. Finally, we find that knockdown of bromodomain proteins in both C. elegans and mammalian neurons, which are known SPOP ubiquitination targets, suppresses the protective effect of SPOP inhibition. Together, these data suggest a model in which SPOP promotes the DPR-dependent ubiquitination and degradation of BRD proteins. We speculate the pharmacological manipulation of this pathway, which is currently underway for multiple cancer subtypes, could also represent an entry point for therapeutic intervention to treat C9orf72 FTD/ALS.
Collapse
|
8
|
Wang X, Zhang JB, He KJ, Wang F, Liu CF. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front Pharmacol 2021; 12:713963. [PMID: 34335276 PMCID: PMC8317260 DOI: 10.3389/fphar.2021.713963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disease (NDD), including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, are characterized by the progressive loss of neurons which leads to the decline of motor and/or cognitive function. Currently, the prevalence of NDD is rapidly increasing in the aging population. However, valid drugs or treatment for NDD are still lacking. The clinical heterogeneity and complex pathogenesis of NDD pose a great challenge for the development of disease-modifying therapies. Numerous animal models have been generated to mimic the pathological conditions of these diseases for drug discovery. Among them, zebrafish (Danio rerio) models are progressively emerging and becoming a powerful tool for in vivo study of NDD. Extensive use of zebrafish in pharmacology research or drug screening is due to the high conserved evolution and 87% homology to humans. In this review, we summarize the zebrafish models used in NDD studies, and highlight the recent findings on pharmacological targets for NDD treatment. As high-throughput platforms in zebrafish research have rapidly developed in recent years, we also discuss the application prospects of these new technologies in future NDD research.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China
| |
Collapse
|
9
|
Braems E, Tziortzouda P, Van Den Bosch L. Exploring the alternative: Fish, flies and worms as preclinical models for ALS. Neurosci Lett 2021; 759:136041. [PMID: 34118308 DOI: 10.1016/j.neulet.2021.136041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterized by the loss of upper and lower motor neurons. In general, patients succumb to respiratory insufficiency due to respiratory muscle weakness. Despite many promising therapeutic strategies primarily identified in rodent models, patient trials remain rather unsuccessful. There is a clear need for alternative approaches, which could provide directions towards the justified use of rodents and which increase the likelihood to identify new promising clinical candidates. In the last decades, the use of fast genetic approaches and the development of high-throughput screening platforms in the nematode Caenorhabditis elegans, in the fruit fly (Drosophila melanogaster) and in zebrafish (Danio rerio) have contributed to new insights into ALS pathomechanisms, disease modifiers and therapeutic targets. In this mini-review, we provide an overview of these alternative small animal studies, modeling the most common ALS genes and discuss the most recent preclinical discoveries. We conclude that small animal models will not replace rodent models, yet they clearly represent an important asset for preclinical studies.
Collapse
Affiliation(s)
- Elke Braems
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Paraskevi Tziortzouda
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
10
|
Oprişoreanu AM, Smith HL, Krix S, Chaytow H, Carragher NO, Gillingwater TH, Becker CG, Becker T. Automated in vivo drug screen in zebrafish identifies synapse-stabilising drugs with relevance to spinal muscular atrophy. Dis Model Mech 2021; 14:259422. [PMID: 33973627 PMCID: PMC8106959 DOI: 10.1242/dmm.047761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Synapses are particularly vulnerable in many neurodegenerative diseases and often the first to degenerate, for example in the motor neuron disease spinal muscular atrophy (SMA). Compounds that can counteract synaptic destabilisation are rare. Here, we describe an automated screening paradigm in zebrafish for small-molecule compounds that stabilize the neuromuscular synapse in vivo. We make use of a mutant for the axonal C-type lectin chondrolectin (chodl), one of the main genes dysregulated in SMA. In chodl-/- mutants, neuromuscular synapses that are formed at the first synaptic site by growing axons are not fully mature, causing axons to stall, thereby impeding further axon growth beyond that synaptic site. This makes axon length a convenient read-out for synapse stability. We screened 982 small-molecule compounds in chodl chodl-/- mutants and found four that strongly rescued motor axon length. Aberrant presynaptic neuromuscular synapse morphology was also corrected. The most-effective compound, the adenosine uptake inhibitor drug dipyridamole, also rescued axon growth defects in the UBA1-dependent zebrafish model of SMA. Hence, we describe an automated screening pipeline that can detect compounds with relevance to SMA. This versatile platform can be used for drug and genetic screens, with wider relevance to synapse formation and stabilisation.
Collapse
Affiliation(s)
- Ana-Maria Oprişoreanu
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| | - Hannah L Smith
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| | - Sophia Krix
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| | - Helena Chaytow
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, UK
| | - Thomas H Gillingwater
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| |
Collapse
|
11
|
Kim ES, Chung CG, Park JH, Ko BS, Park SS, Kim YH, Cha IJ, Kim J, Ha CM, Kim HJ, Lee SB. C9orf72-associated arginine-rich dipeptide repeats induce RNA-dependent nuclear accumulation of Staufen in neurons. Hum Mol Genet 2021; 30:1084-1100. [PMID: 33783499 PMCID: PMC8188407 DOI: 10.1093/hmg/ddab089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP Staufen may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS—but not with mutated endogenous NLS—potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/−), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/− is protective. stau+/− also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.
Collapse
Affiliation(s)
- Eun Seon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Byung Su Ko
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Sung Soon Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Yoon Ha Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - In Jun Cha
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Jaekwang Kim
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Hyung-Jun Kim
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| |
Collapse
|
12
|
Klingl YE, Pakravan D, Van Den Bosch L. Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:1353-1372. [PMID: 32726472 PMCID: PMC9327724 DOI: 10.1111/bph.15217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. ALS patients suffer from a progressive loss of motor neurons, leading to respiratory failure within 3 to 5 years after diagnosis. Available therapies only slow down the disease progression moderately or extend the lifespan by a few months. Epigenetic hallmarks have been linked to the disease, creating an avenue for potential therapeutic approaches. Interference with one class of epigenetic enzymes, histone deacetylases, has been shown to affect neurodegeneration in many preclinical models. Consequently, it is crucial to improve our understanding about histone deacetylases and their inhibitors in (pre)clinical models of ALS. We conclude that selective inhibitors with high tolerability and safety and sufficient blood-brain barrier permeability will be needed to interfere with both epigenetic and non-epigenetic targets of these enzymes. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Yvonne E. Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| | - Donya Pakravan
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI)KU Leuven‐University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
13
|
Kukharsky MS, Skvortsova VI, Bachurin SO, Buchman VL. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Med Res Rev 2020; 41:2804-2822. [DOI: 10.1002/med.21725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Michail S. Kukharsky
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Veronika I. Skvortsova
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Vladimir L. Buchman
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
- School of Biosciences Cardiff University Cardiff United Kingdom
| |
Collapse
|
14
|
Brown DG, Shorter J, Wobst HJ. Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorg Med Chem Lett 2019; 30:126942. [PMID: 31926785 DOI: 10.1016/j.bmcl.2019.126942] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/16/2023]
Abstract
Novel treatments are desperately needed for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this review article, a survey of emerging small-molecule approaches for ALS and FTD therapies is provided. These approaches include targeting aberrant liquid-liquid phase separation and stress granule assembly, modulation of RNA-protein interactions, inhibition of TDP-43 phosphorylation, inhibition of poly(ADP-ribose) polymerases (PARP), RNA-targeting approaches to reduce RAN translation of dipeptide repeat proteins from repeat expansions of C9ORF72, and novel autophagy activation pathways. This review details the emerging small-molecule tools and leads in these areas, along with a critical perspective on the key challenges facing these opportunities.
Collapse
Affiliation(s)
- Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, United States.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, United States.
| |
Collapse
|
15
|
Brown DG, Wobst HJ. Opportunities and Challenges in Phenotypic Screening for Neurodegenerative Disease Research. J Med Chem 2019; 63:1823-1840. [PMID: 31268707 DOI: 10.1021/acs.jmedchem.9b00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toxic misfolded proteins potentially underly many neurodegenerative diseases, but individual targets which regulate these proteins and their downstream detrimental effects are often unknown. Phenotypic screening is an unbiased method to screen for novel targets and therapeutic molecules and span the range from primitive model organisms such as Sacchaomyces cerevisiae, which allow for high-throughput screening to patient-derived cell-lines that have a close connection to the disease biology but are limited in screening capacity. This perspective will review current phenotypic models, as well as the chemical screening strategies most often employed. Advances in in 3D cell cultures, high-content screens, robotic microscopy, CRISPR screening, and use of machine learning methods to process the enormous amount of data generated by these screens are certain to change the paradigm for phenotypic screening and will be discussed.
Collapse
Affiliation(s)
- Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|