1
|
Wu C, Du X, Liu H, Chen X, Ge K, Meng R, Zhang Z, Zhang H. Advances in polychlorinated biphenyls-induced female reproductive toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170543. [PMID: 38309369 DOI: 10.1016/j.scitotenv.2024.170543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a class of endocrine-disrupting chemicals (EDCs) widely present in the environment. PCBs have been of concern due to their anti/estrogen-like effects, which make them more toxic to the female reproductive system. However, there is still a lack of systematic reviews on the reproductive toxicity of PCBs in females, so the adverse effects and mechanisms of PCBs on the female reproductive system were summarized in this paper. Our findings showed that PCBs are positively associated with lower pregnancy rate, hormone disruption, miscarriage and various reproductive diseases in women. In animal experiments, PCBs can damage the structure and function of the ovaries, uterus and oviducts. Also, PCBs could produce epigenetic effects and be transferred to the offspring through the maternal placenta, causing development retardation, malformation and death of embryos, and damage to organs of multiple generations. Furthermore, the mechanisms of PCBs-induced female reproductive toxicity mainly include receptor-mediated hormone disorders, oxidative stress, apoptosis, autophagy, and epigenetic modifications. Finally, we also present some directions for future research on the reproductive toxicity of PCBs. This detailed information provided a valuable reference for fully understanding the reproductive toxicity of PCBs.
Collapse
Affiliation(s)
- Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Jordan-Ward R, von Hippel FA, Wilson CA, Rodriguez Maldonado Z, Dillon D, Contreras E, Gardell A, Minicozzi MR, Titus T, Ungwiluk B, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Differential gene expression and developmental pathologies associated with persistent organic pollutants in sentinel fish in Troutman Lake, Sivuqaq, Alaska. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122765. [PMID: 37913975 PMCID: PMC11793931 DOI: 10.1016/j.envpol.2023.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Catherine A Wilson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Zyled Rodriguez Maldonado
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Elise Contreras
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Alison Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, USA
| | - Michael R Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN, 56001, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Bobby Ungwiluk
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
3
|
Tam N, Kong RYC, Lai KP. Reproductive toxicity in marine medaka (Oryzias melastigma) due to embryonic exposure to PCB 28 or 4'-OH-PCB 65. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162401. [PMID: 36842578 DOI: 10.1016/j.scitotenv.2023.162401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that juvenile or adult exposure to polychlorinated biphenyls (PCBs) induces alterations in reproductive functions (e.g., reduced fertilization rate) and behavior (e.g., reduced nest maintenance) in fish. Embryonic exposures to other endocrine disrupting chemicals have been reported to induce long-term reproductive toxicity in fish. However, the effects of embryonic exposure to PCBs or their metabolites, OH-PCBs, on long-term reproductive function in fish are unknown. In the present study, we used the marine medaka fish (Oryzias melastigma) as a model to assess the reproductive endpoints in response to embryonic exposure to either PCB 28 or 4'-OH-PCB 65. Our results showed that the sex ratio of marine medaka was feminized by exposure to 4'-OH-PCB 65. Fecundity was decreased in the medaka treated with either PCB 28 or 4'-OH-PCB 65, whereas the medaka from embryonic exposure to 4'-OH-PCB 65 additionally exhibited reduced fertilization and a reduction in the hatching success rate of offspring, as well as decreased sperm motility. Serum 11-KT concentrations were reduced in the PCB 28-treated medaka, and serum estradiol (E2)/testosterone (T) and E2/11-ketotestosterone (11-KT) ratios were decreased in the 4'-OH-PCB 65-treated medaka. To explain these observations at the molecular level, transcriptomic analysis of the gonads was performed. Bioinformatic analysis using Gene Ontology and Ingenuity Pathway Analysis revealed that genes involved in various pathways potentially involved in reproductive functions (e.g., steroid metabolism and cholesterol homeostasis) were differentially expressed in the testes and ovaries of either PCB- or OH-PCB-treated medaka. Thus, the long-term reproductive toxicity in fish due to embryonic exposure to PCB or OH-PCB should be considered for environmental risk assessment.
Collapse
Affiliation(s)
- Nathan Tam
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Richard Yuen Chong Kong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
von Hippel FA, Miller PK, Carpenter DO, Dillon D, Smayda L, Katsiadaki I, Titus TA, Batzel P, Postlethwait JH, Buck CL. Endocrine disruption and differential gene expression in sentinel fish on St. Lawrence Island, Alaska: Health implications for indigenous residents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:279-287. [PMID: 29182972 PMCID: PMC5809177 DOI: 10.1016/j.envpol.2017.11.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 05/28/2023]
Abstract
People living a subsistence lifestyle in the Arctic are highly exposed to persistent organic pollutants, including polychlorinated biphenyls (PCBs). Formerly Used Defense (FUD) sites are point sources of PCB pollution; the Arctic contains thousands of FUD sites, many co-located with indigenous villages. We investigated PCB profiles and biological effects in freshwater fish (Alaska blackfish [Dallia pectoralis] and ninespine stickleback [Pungitius pungitius]) living upstream and downstream of the Northeast Cape FUD site on St. Lawrence Island in the Bering Sea. Despite extensive site remediation, fish remained contaminated with PCBs. Vitellogenin concentrations in males indicated exposure to estrogenic contaminants, and some fish were hypothyroid. Downstream fish showed altered DNA methylation in gonads and altered gene expression related to DNA replication, response to DNA damage, and cell signaling. This study demonstrates that, even after site remediation, contaminants from Cold War FUD sites in remote regions of the Arctic remain a potential health threat to local residents - in this case, Yupik people who had no influence over site selection and use by the United States military.
Collapse
Affiliation(s)
- Frank A von Hippel
- Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA.
| | - Pamela K Miller
- Alaska Community Action on Toxics, 505 W. Northern Lights Blvd., Suite 205, Anchorage, AK 99503, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Room A217, Rensselaer, NY 12144, USA
| | - Danielle Dillon
- Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA
| | - Lauren Smayda
- Alaska Native Tribal Health Consortium, 4000 Ambassador Dr., Anchorage, AK 99508, USA
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Tom A Titus
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, 222 Huestis Hall, Eugene, OR 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, 222 Huestis Hall, Eugene, OR 97403, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, 222 Huestis Hall, Eugene, OR 97403, USA
| | - C Loren Buck
- Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA
| |
Collapse
|
5
|
Fort DJ, Fort TD, Mathis MB, Ball RW. Boric Acid Is Reproductively Toxic to Adult Xenopus laevis, but Not Endocrine Active. Toxicol Sci 2016; 154:16-26. [PMID: 27466210 DOI: 10.1093/toxsci/kfw138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential reproductive and endocrine toxicity of boric acid (BA) in the African clawed frog, Xenopus laevis, was evaluated using a 30-day exposure of adult frogs. Adult female and male frogs established as breeders were exposed to a culture water control and 4 target (nominal) test concentrations [5.0, 7.5, 10.0, and 15 mg boron (B)/L, equivalent to 28.5, 42.8, 57.0, and 85.5 mg BA/L] using flow-through diluter exposure system. The primary endpoints measured were adult survival, growth (weight and snout-vent length [SVL]), necropsy data, reproductive fecundity, and development of progeny (F1) from the exposed frogs. Necropsy endpoints included gonad weight, gonado-somatic index (GSI), ovary profile (oocyte normalcy and stage distribution), sperm count, and dysmorphology. Endocrine endpoints included plasma estradiol (E2), testosterone (T), dihydrotestosteone (DHT), gonadal CYP 19 (aromatase), and gonadal 5α-reductase (5-AR). BA exposure to adult female X. laevis increased the proportion of immature oocytes (< stage II) in the ovaries of females, reduced sperm counts and increased sperm cell dysmorphology frequency in male frogs exposed to 15 mg B/L. No effects on the other general, developmental (F1), or endocrine endpoints were observed. Based on the results of the present study, the no observed adverse effects concentration (NOAEC) for the reproductive endpoints was 10 mg B/L; and 15 mg B/L for reproductive fecundity, F1 embryo larval development, and endocrine function. These results confirmed that although BA is capable of inducing reproductive toxicity at high concentrations, it is not an endocrine disrupting agent.
Collapse
Affiliation(s)
- Douglas J Fort
- *Fort Environmental Laboratories, Stillwater, Oklahoma 74074
| | - Troy D Fort
- *Fort Environmental Laboratories, Stillwater, Oklahoma 74074
| | | | - R Wayne Ball
- Rio Tinto Minerals, Greenwood Village, Colorado 80111
| |
Collapse
|
6
|
Harmon SM. The Toxicity of Persistent Organic Pollutants to Aquatic Organisms. PERSISTENT ORGANIC POLLUTANTS (POPS): ANALYTICAL TECHNIQUES, ENVIRONMENTAL FATE AND BIOLOGICAL EFFECTS 2015. [DOI: 10.1016/b978-0-444-63299-9.00018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Orton F, Tyler CR. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biol Rev Camb Philos Soc 2014; 90:1100-17. [DOI: 10.1111/brv.12147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Frances Orton
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| | - Charles R. Tyler
- Biosciences; College of Life and Environmental Sciences, University of Exeter; Stocker Road Exeter EX4 4QD U.K
| |
Collapse
|
8
|
Zhang Q, Lu M, Dong X, Wang C, Zhang C, Liu W, Zhao M. Potential estrogenic effects of phosphorus-containing flame retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6995-7001. [PMID: 24844797 DOI: 10.1021/es5007862] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As the substitute of polybrominated diphenyl ethers (PBDEs), further assessments about the potential ecological safety and health risks of phosphorus-containing flame retardants (PFRs) are required because the worldwide demand for PFRs has been increasing every year. In this study, we examined the agonistic/antagonistic activity of a group of PFRs by three in vitro models (luciferase reporter gene assay, yeast two-hybrid assay, and E-screen assay). Molecule docking was used to further explain the interactions between ERα and PFRs. Data from luciferase reporter gene analysis showed three members of the nine tested PFRs significantly induced estrogenic effects, with the order of TPP > TCP > TDCPP, while TCEP and TEHP have remarkable antiestrogenic properties with calculated REC20 and RIC20 values of 10(-6) M or lower. Results from the luciferase reporter gene method are generally consistent with results obtained from the yeast two-hybrid assay and E-screen, except for the positive estrogenic activity of TBP in E-screen testing. Docking results showed that binding between ligands and ERα was stabilized by hydrophobic interactions. As a proposed alternative for brominated flame retardant, PFRs may have anti/estrogenic activity via ERα at the low dose typical of residue in environmental matrix or animals. PFRs with a short chain, halogen, and benzene ring in the substituent group tend to be estrogenic. Our research suggests that comprehensive evaluations, including health and ecological assessments, are required in determining whether PFRs are preferable as an emerging industrial substitute.
Collapse
Affiliation(s)
- Quan Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou 310032, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Li X, Ye L, Wang X, Shi W, Qian X, Zhu Y, Yu H. Molecular modeling and molecular dynamics simulation studies on the interactions of hydroxylated polychlorinated biphenyls with estrogen receptor-β. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:357-367. [PMID: 23712771 DOI: 10.1007/s00244-013-9916-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting chemicals have attracted great concern. As major metabolites of polychlorinated biphenyls (PCBs), hydroxylated polychlorinated biphenyls (HO-PCBs) may disrupt estrogen hormone status because of their structural similarity to estrogen endogenous compounds. However, interactions between HO-PCBs and estrogen receptors (ERs) are not fully understood. In the present work, a molecular modeling study combining molecular docking, molecular dynamics simulations, and binding free energy calculations was performed to characterize the interactions of three HO-PCBs (4'-HO-PCB50, 2'-HO-PCB65, and 4'-HO-PCB69) having much different estrogenic activities with ERβ. Docking results showed that binding between ligands and ERβ was stabilized by hydrogen bond and hydrophobic interactions. The binding free energies of three ligands with ERβ were calculated, and further binding free energy decomposition analysis indicated that the dominating driving force of the binding between the ligands and ERβ was the van der Waals interaction. Some key residues, such as Leu298, Phe356, Gly472, His475, and Leu476, played important roles in ligand-receptor interactions by forming hydrophobic and hydrogen bond interactions with ligands. The results may be beneficial to increase understanding of the interactions between HO-PCBs and ERβ.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Erdmann SE, Dietz R, Sonne C, Bechshøft TØ, Vorkamp K, Letcher RJ, Long M, Bonefeld-Jørgensen EC. Xenoestrogenic and dioxin-like activity in blood of East Greenland polar bears (Ursus maritimus). CHEMOSPHERE 2013; 92:583-591. [PMID: 23648332 DOI: 10.1016/j.chemosphere.2013.03.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
The aims of the project were to (i) extract the lipophilic persistent organic pollutants (POPs) from the blood of 99 East Greenland polar bears and assess the combined mixture effect on the estrogen receptor (ER) and the aryl hydrocarbon receptor (AhR) mediated transactivity; (ii) To evaluate whether the receptor transactivities were associated with selected POP markers, and (iii) compare the receptor transactivities in polar bears with earlier studies on Greenlandic Inuit. Lipophilic POPs were extracted using a combination of solid-phase extraction (SPE) and high performance liquid chromatography (HPLC). ER mediated transactivity was determined using the ER luciferase reporter MVLN cell assay. The extracts were tested alone (XER) and together with 17β-estradiol (E2) as a physiological mimic (XERcomp). Dioxins and dioxin-like (DL) compounds were extracted by a combination of SPE and the Supelco Dioxin Prep System®. AhR mediated dioxin-like transactivity was determined using the AhR luciferase reporter Hepa 1.12cR cell assay. Agonistic ER transactivity was elicited by 19% of the samples, and a further increased E2 induced ER response was found for 52%, whereas 17% antagonized the E2 induced ER response. Positive correlations were found in subadult bears between XER and several POP biomarkers. XER and XERcomp correlated positively to each other. A total of 91% of the polar bear blood extracts elicited agonistic AhR transactivity. The AhR-TCDD equivalent (AhR-TEQ) median levels were higher among adult bears compared to subadult bears, but not significantly.
Collapse
Affiliation(s)
- Simon E Erdmann
- Centre for Arctic Health, Department of Public Health and Arctic Research Centre, Aarhus University, Build. 1260, Bartholins Allé 2, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruiz P, Myshkin E, Quigley P, Faroon O, Wheeler JS, Mumtaz MM, Brennan RJ. Assessment of hydroxylated metabolites of polychlorinated biphenyls as potential xenoestrogens: a QSAR comparative analysis∗. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:393-416. [PMID: 23557136 DOI: 10.1080/1062936x.2013.781537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alternative methods, including quantitative structure-activity relationships (QSAR), are being used increasingly when appropriate data for toxicity evaluation of chemicals are not available. Approximately 40 mono-hydroxylated polychlorinated biphenyls (OH-PCBs) have been identified in humans. They represent a health and environmental concern because some of them have been shown to have agonist or antagonist interactions with human hormone receptors. This could lead to modulation of steroid hormone receptor pathways and endocrine system disruption. We performed QSAR analyses using available estrogenic activity (human estrogen receptor ER alpha) data for 71 OH-PCBs. The modelling was performed using multiple molecular descriptors including electronic, molecular, constitutional, topological, and geometrical endpoints. Multiple linear regressions and recursive partitioning were used to best fit descriptors. The results show that the position of the hydroxyl substitution, polarizability, and meta adjacent un-substituted carbon pairs at the phenolic ring contribute towards greater estrogenic activity for these chemicals. These comparative QSAR models may be used for predictive toxicity, and identification of health consequences of PCB metabolites that lack empirical data. Such information will help prioritize such molecules for additional testing, guide future basic laboratory research studies, and help the health/risk assessment community understand the complex nature of chemical mixtures.
Collapse
Affiliation(s)
- P Ruiz
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Li X, Ye L, Wang X, Wang X, Liu H, Qian X, Zhu Y, Yu H. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on estrogenic activity of hydroxylated polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:230-238. [PMID: 23137989 DOI: 10.1016/j.scitotenv.2012.08.072] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
Hydroxylated polychlorinated biphenyls (HO-PCBs), major metabolites of PCBs, have been reported to present agonist or antagonist interactions with estrogen receptor α (ERα) and induce ER-mediated responses. In this work, a multistep framework combining molecular docking, molecular dynamics (MD) simulations, and structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed to explore the influence of structural features on the estrogenic activities of HO-PCBs, and to investigate the molecular mechanism of ERα-ligand interactions. The CoMSIA (comparative molecular similarity indices analysis) model was developed from the conformations obtained from molecular docking. The model exhibited statistically significant results as the cross-validated correlation coefficient q² was 0.648, the non-cross-validated correlation coefficient r² was 0.968, and the external predictive correlation coefficient r(pred)² was 0.625. The key amino acid residues were identified by molecular docking, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies correlated well with the experimental activity. An energetic analysis, MM-GBSA energy decomposition, revealed that the van der Waals interaction was the major driving force for the binding of compounds to ERα. The hydrogen bond interactions between the ligands and residue His524 help to stabilize the conformation of ligands at the binding pocket. These results are expected to be beneficial to predict estrogenic activities of other HO-PCB congeners and helpful for understanding the binding mechanism of HO-PCBs and ERα.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen L, Yu C, Shen C, Cui J, Chen C, Chen Y. Occurrence of (anti)estrogenic effects in surface sediment from an e-waste disassembly region in East China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:161-165. [PMID: 22487964 DOI: 10.1007/s00128-012-0632-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
Because of the report on the abnormal local fertility rate at Taizhou area, which is a famous e-waste disassembly center in China, the hormone-like effects in the surface sediment from the local river was investigated. Compared to the control site DG, significant estrogenic effects (p < 0.01) were observed at e-waste recycling sites ranging from 6.01 to 29.31 nmol/kg dw E2 equivalents by water extraction while ranging from 20.47 to 135.02 nmol/kg dw by organic extraction. When coincubated with E2, the water and the organic extractions displayed significant (p < 0.01) synergistic and anti-estrogenic effects respectively.
Collapse
Affiliation(s)
- Lei Chen
- College of Environmental & Resource Sciences of Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Takeuchi S, Shiraishi F, Kitamura S, Kuroki H, Jin K, Kojima H. Characterization of steroid hormone receptor activities in 100 hydroxylated polychlorinated biphenyls, including congeners identified in humans. Toxicology 2011; 289:112-21. [DOI: 10.1016/j.tox.2011.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/01/2022]
|
15
|
Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus. Toxicol Appl Pharmacol 2011; 252:36-46. [PMID: 21277884 DOI: 10.1016/j.taap.2011.01.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 11/22/2022]
Abstract
Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB). On P1, litter composition, anogenital distance (AGD), and body weight were assessed. Pups were euthanized for immunohistochemistry of estrogen receptor α (ERα) or TUNEL labeling of apoptotic cells or quantitative PCR of 48 selected genes in the preoptic area (POA). We found that treatment with EB or A1221 had a sex-specific effect on developmental apoptosis in the neonatal anteroventral periventricular nucleus (AVPV), a sexually dimorphic hypothalamic region involved in the regulation of reproductive neuroendocrine function. In this region, exposed females had increased numbers of apoptotic nuclei, whereas there was no effect of treatment in males. For ERα, EB treatment increased immunoreactive cell numbers and density in the medial preoptic nucleus (MPN) of both males and females, while A1221 and the PCB mixture had no effect. PCR analysis of gene expression in the POA identified nine genes that were significantly altered by prenatal EDC exposure, in a manner that varied by sex and treatment. These genes included brain-derived neurotrophic factor, GABA(B) receptors-1 and -2, IGF-1, kisspeptin receptor, NMDA receptor subunits NR2b and NR2c, prodynorphin, and TGFα. Collectively, these results suggest that the disrupted sexual differentiation of the POA by prenatal EDC exposures is already evident as early as the day after birth, effects that may change the trajectory of postnatal development and compromise adult reproductive function.
Collapse
|