1
|
Ma SN, Dong XM, Xu JL, Zhao CP, Liu M, Wang HJ, Jeppesen E. Dissolved organic carbon can alter coastal sediment phosphorus dynamic: Effects of different carbon forms and concentrations. CHEMOSPHERE 2025; 370:143914. [PMID: 39662842 DOI: 10.1016/j.chemosphere.2024.143914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/14/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Coastal waters are receiving increasing loads of dissolved organic carbon (DOC), differing in structural complexity and molecular weights with potential different effects on the phosphorus (P) dynamics in these waters. This study conducted an in-situ investigation in Xiangshan Harbor, China, to explore the patterns of P release in response to DOC inputs. To further elucidate the underlying mechanisms behind the DOC-affected sediment P release, a two-month mesocosm experiment was undertaken with coastal sediment (Xiangshan Harbor) to which acetate, glucose, and humic acid (representing the fermentation product, the simple available carbon, and the refractory humic-like carbon sources, respectively) were separately added to the overlying water at dosages of 0, 5, 10, and 20 mg C L-1. We found that: i) sediment P release showed a non-linear increase with DOC input, a pattern likely due to the diverse forms of DOC in coastal zones, which had varying impacts on P release; ⅱ) significant P release for labile DOC (acetate- and glucose-amended) treatments but retention for humic acid treatments, and the magnitude of P changes mainly depended on the amount of DOC addition; ⅲ) acetate and glucose shared similar P-release-promotion mechanisms, i.e., decreased dissolved oxygen, increased ppk genes in water, and increased P bacteria and alkaline phosphatase activity were the dominant factors behind the P release for both carbon sources, as indicated by piecewise structural equation modelling; ⅳ) humic acid-inhibitory effects on sediment P release, which likely reflect increasing "P-humic acid" complexes that favor P adsorption and sedimentation and form stable "humic acid-enzyme" complexes that reduce the catalytic activity of alkaline phosphatase. Our findings provide new understanding of relationships between loading of DOC with different form/concentration and sediment P dynamics in coastal areas.
Collapse
Affiliation(s)
- Shuo-Nan Ma
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Xu-Meng Dong
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Ji-Lin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Chun-Pu Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Miao Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Hai-Jun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China; Department of Ecoscience and WATEC, Aarhus University, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731, Erdemli-Mersin, Turkey.
| |
Collapse
|
2
|
Jindo K, Audette Y, Olivares FL, Canellas LP, Smith DS, Paul Voroney R. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: a review. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2023; 10:29. [PMID: 37026154 PMCID: PMC10069009 DOI: 10.1186/s40538-023-00401-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/10/2023] [Indexed: 06/01/2023]
Abstract
Soil organic matter (SOM) has a critical role in regulating soil phosphorus (P) dynamics and producing phytoavailable P. However, soil P dynamics are often explained mainly by the effects of soil pH, clay contents, and elemental compositions, such as calcium, iron, and aluminum. Therefore, a better understanding of the mechanisms of how SOM influences phytoavailable P in soils is required for establishing effective agricultural management for soil health and enhancement of soil fertility, especially P-use efficiency. In this review, the following abiotic and biotic mechanisms are discussed; (1) competitive sorption between SOM with P for positively charged adsorption sites of clays and metal oxides (abiotic reaction), (2) competitive complexations between SOM with P for cations (abiotic reaction), (3) competitive complexations between incorporation of P by binary complexations of SOM and bridging cations with the formation of stable P minerals (abiotic reaction), (4) enhanced activities of enzymes, which affects soil P dynamics (biotic reaction), (5) mineralization/immobilization of P during the decay of SOM (biotic reaction), and (6) solubilization of inorganic P mediated by organic acids released by microbes (biotic reaction).
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems Research, Wageningen University & Research, Wageningen, 6700AA The Netherlands
| | - Yuki Audette
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
- Chitose Laboratory Corp., Kanagawa, 213-0012 Japan
| | - Fabio Lopez Olivares
- Laboratório de Biologia Celular e Tecidual & Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602 Brazil
| | - Luciano Pasqualoto Canellas
- Laboratório de Biologia Celular e Tecidual & Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602 Brazil
| | - D. Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5 Canada
| | - R. Paul Voroney
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
3
|
Lumactud RA, Gorim LY, Thilakarathna MS. Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.977121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Humic-based products (HPs) are carbon-rich organic amendments in the forms of extracted humic substances from manure, compost, and raw and extracted forms of lignites, coals and peats. HPs are widely used in agriculture and have beneficial effects on plants. While the agronomic benefits of HPs have been widely reported, information on their impact on the soil microbial community composition and functions is lacking, despite claims made by companies of humic substances as biostimulants. In this review, we explored published research on microbial responses with HPs application in an agronomic context. Although research data are sparse, current results suggest indirect impacts of HPs on microbial community composition and activities. HPs application changes the physico-chemical properties of the soil and influence root exudation, which in turn impact the microbial structure and function of the soil and rhizosphere. Application of HPs to the soil as biostimulants seemed to favor plant/soil beneficial bacterial community composition. HPs impacts on microbial activities that influence soil biogeochemical functioning remain unclear; existing data are also inconsistent and contradictory. The structural properties of HPs caused inconsistencies in their reported impacts on soil properties and plants. The sources of HPs and forms (whether extracted or raw), soil type, geographic location, crop species, and management strategies, among others, affect microbial communities affecting HPs efficacy as biostimulants. A more holistic approach to research encompassing multiple influential factors and leveraging the next-generation sequencing technology is needed to unravel the impacts of HPs on the soil microbiome. Addressing these knowledge gaps facilitates sustainable and efficient use of HPs as organic agricultural amendments reducing the use of chemical fertilizers.
Collapse
|
4
|
Mazzei P, Cangemi S, Malakshahi Kurdestani A, Mueller T, Piccolo A. Quantitative Evaluation of Noncovalent Interactions between 3,4-Dimethyl-1 H-pyrazole and Dissolved Humic Substances by NMR Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11771-11779. [PMID: 35896036 DOI: 10.1021/acs.est.2c00900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrification inhibitors (NI) represent a valid chemical strategy to retard nitrogen oxidation in soil and limit nitrate leaching or nitrogen oxide emission. We hypothesized that humic substances can complex NI, thus affecting their activity, mobility, and persistence in soil. Therefore, we focused on 3,4-dimethylpyrazole phosphate (DMPP) by placing it in contact with increasing concentrations of model fulvic (FA) and humic (HA) acids. The complex formation was assessed through advanced and composite NMR techniques (chemical shift drift, line-broadening effect, relaxation times, saturation transfer difference (STD), and diffusion ordered spectroscopy (DOSY)). Our results showed that both humic substances interacted with DMPP, with HA exhibiting a significantly greater affinity than FA. STD emphasized the pivotal role of the aromatic signal, for HA-DMPP association, and both alkyl methyl groups, for FA-DMPP association. The fractions of complexed DMPP were determined on the basis of self-diffusion coefficients, which were then exploited to calculate both the humo-complex affinity constants and the free Gibbs energy (Kd and ΔG for HA were 0.5169 M and -1636 kJ mol-1, respectively). We concluded that DMPP-based NI efficiency may be altered by soil organic matter, characterized by a pronounced hydrophobic nature. This is relevant to improve nitrogen management and lower its environmental impact.
Collapse
Affiliation(s)
- Pierluigi Mazzei
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano 84084, Italy
| | - Silvana Cangemi
- Centro Interdipartimentale sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici 80055, Italy
| | - Ali Malakshahi Kurdestani
- Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart 70593, Germany
| | - Torsten Mueller
- Department of Fertilization and Soil Matter Dynamics, University of Hohenheim, Stuttgart 70593, Germany
| | - Alessandro Piccolo
- Centro Interdipartimentale sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Portici 80055, Italy
| |
Collapse
|
5
|
Maeda Y, Mise K, Iwasaki W, Watanabe A, Asakawa S, Asiloglu R, Murase J. Invention of Artificial Rice Field Soil: A Tool to Study the Effect of Soil Components on the Activity and Community of Microorganisms Involved in Anaerobic Organic Matter Decomposition. Microbes Environ 2021; 35. [PMID: 32963205 PMCID: PMC7734398 DOI: 10.1264/jsme2.me20093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Soils are characterized by diverse biotic and abiotic constituents, and this complexity hinders studies on the effects of individual soil components on microorganisms in soil. Although artificial soils have been used to overcome this issue, anoxic soils have not yet been examined. We herein aimed to create artificial soil that reproduces anaerobic methane production by soil from a rice field. Organic materials and mineral particles separated from rice field soil were mixed to prepare an artificial soil matrix; the matrix was added with a small volume of a soil suspension as a microbial inoculum. When the microbial inoculum was added immediately after matrix preparation, anaerobic decomposition was markedly less than that by original soil. When the inoculum was added 9–15 days after soil matrix preparation, anaerobic CO2 and methane production was markedly activated, similar to that by original soil after 40 days of incubation, which suggested that the maturation of the soil matrix was crucial for the reproduction of anaerobic microbial activities. The diversity of the microbial community that developed in artificial soil was markedly less than that in original soil, whereas their predicted functional profiles were similar. Humic substances altered the composition and network patterns of the microbial community. These results suggested that the functional redundancy of soil microorganisms was sustained by different microbial sub-communities. The present study demonstrated that artificial soil is a useful tool for investigating the effects of soil components on microorganisms in anoxic soil.
Collapse
Affiliation(s)
- Yu Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | | | - Akira Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - Susumu Asakawa
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - Jun Murase
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
6
|
Pham DM, Kasai T, Yamaura M, Katayama A. Humin: No longer inactive natural organic matter. CHEMOSPHERE 2021; 269:128697. [PMID: 33139048 DOI: 10.1016/j.chemosphere.2020.128697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The discovery of the function of humin (HM), an insoluble fraction of humic substances (HSs), as an extracellular electron mediator (EEM) in 2012 has provided insight into the role of HM in nature and its potential for in situ bioremediation of pollutants. The EEM function is thought to enable the energy network of various microorganisms using HM. Recently, a number of studies on the application of HM as EEM in anaerobic microbial cultures have been conducted. Even so, there is a need for developing a holistic view of HM EEM function. In this paper, we summarize all the available information on the properties of HM EEM function, its applications, possible redox-active structures, and the interaction between HM and microbial cells. We also suggest scopes for future HM research.
Collapse
Affiliation(s)
- Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan
| | - Takuya Kasai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Mirai Yamaura
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
7
|
Song X, Yang J, Hussain Q, Liu X, Zhang J, Cui D. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140202. [PMID: 32569918 DOI: 10.1016/j.scitotenv.2020.140202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Humic substances (HS) are essential in environment processes and carbon (C) sequestration in soils. In this study, organic materials such as cotton straw and its derived compost and biochar were added to the soil on a C-equivalent basis and incubated for 30 and 180 days in order to investigate the different forms of plant biomass derived C sequestration in HS. The C distribution in humic acid (HA), fulvic acid (FA), and humin (Hu) derived from organic materials was investigated using the 13C isotope method, while the catalase, sucrose, and β-glucosidase activities were also determined. The results showed that C3 distribution of Hu derived from straw, compost and biochar increased from 40.94% to 67.12%, 74.47% and 80.75%, respectively. In addition, the increase of C3 distribution of HA or FA derived from straw, compost and biochar were 4.69%, 10.09% and 1.49%, respectively. There were significantly positive correlations between catalase, sucrase and β-glucosidase activities and C3 derived HA and FA. The principal component analysis showed that catalase, sucrase and β-glucosidase were explained mainly by the first principal component indicating a significant correlation. These findings suggest that straw, compost and biochar are mainly sequestrated in Hu. Comparatively, the straw and compost are more likely to contribute to the formation of HA and FA in soil, but biochar favors the Hu, which helps in soil C sequestration. The formation of HA and FA derived from organic materials was supported by catalase, sucrase and β-glucosidase activities.
Collapse
Affiliation(s)
- Xiangyun Song
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jingkai Yang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qaiser Hussain
- Institute of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Xinwei Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jinjing Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Dejie Cui
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
8
|
Singh S, Kumar V, Singla S, Sharma M, Singh DP, Prasad R, Thakur VK, Singh J. Kinetic Study of the Biodegradation of Acephate by Indigenous Soil Bacterial Isolates in the Presence of Humic Acid and Metal Ions. Biomolecules 2020; 10:E433. [PMID: 32168777 PMCID: PMC7175145 DOI: 10.3390/biom10030433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 01/29/2023] Open
Abstract
Many bacteria have the potential to use specific pesticides as a source of carbon, phosphorous, nitrogen and sulphur. Acephate degradation by microbes is considered to be a safe and effective method. The overall aim of the present study was to identify acephate biodegrading microorganisms and to investigate the degradation rates of acephate under the stress of humic acid and most common metal ions Fe(III) and copper Cu(II). Pseudomonas azotoformanss strain ACP1, Pseudomonas aeruginosa strain ACP2, and Pseudomonas putida ACP3 were isolated from acephate contaminated soils. Acephate of concentration 100 ppm was incubated with separate strain inoculums and periodic samples were drawn for UV-visible, FTIR (Fourier-transform infrared spectroscopy) and MS (Mass Spectrometry) analysis. Methamidophos, S-methyl O-hydrogen phosphorothioamidate, phosphenothioic S-acid, and phosphenamide were the major metabolites formed during the degradation of acephate. The rate of degradation was applied using pseudo-first-order kinetics to calculate the half-life (t1/2) values, which were 14.33-16.72 d-1 (strain(s) + acephate), 18.81-21.50 d-1 (strain(s) + acephate + Cu(II)), 20.06 -23.15 d-1 (strain(s) + acephate + Fe(II)), and 15.05-17.70 d-1 (strains + acephate + HA). The biodegradation efficiency of the three bacterial strains can be ordered as P. aeruginosa > P. putida > P. azotoformans. The present study illustrated the decomposition mechanism of acephate under different conditions, and the same may be applied to the removal of other xenobiotic compounds.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India; (S.S.); (S.S.)
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior 474009, MP, India;
| | - Sourav Singla
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India; (S.S.); (S.S.)
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib 173101, HP, India;
| | - Dhananjaya P. Singh
- Crop Improvement, Division ICAR- Indian Institute of Vegetable Research, Jakhini (Shahanshapur), VARANASI 221 305, UTTAR PRADESH, India;
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India; (S.S.); (S.S.)
| |
Collapse
|
9
|
Lipczynska-Kochany E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. CHEMOSPHERE 2018; 202:420-437. [PMID: 29579677 DOI: 10.1016/j.chemosphere.2018.03.104] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 05/27/2023]
Abstract
Depicted as large polymers by the traditional model, humic substances (HS) tend to be considered resistant to biodegradation. However, HS should be regarded as supramolecular associations of rather small molecules. There is evidence that they can be degraded not only by aerobic but also by anaerobic bacteria. HS presence alters biological transformations of organic pollutants in water and soil. HS, including humin, have a great potential for an application in aerobic and anaerobic wastewater treatment as well as in bioremediation. Black carbon materials, including char (biochar) and activated carbon (AC), long recognized effective sorbents, have been recently discovered to act as effective redox mediators (RM), which may significantly accelerate degradation of organic pollutants in a way similar to HS. Humic-like coating on the biochar surface has been identified. Explanation of mechanisms and possibility of applications of black carbon materials have only started to be explored. Results of many original and review papers, presented and discussed in this article, show an enormous potential for an interesting, multidisciplinary research as well as for a development of new, green technologies for biological wastewater treatment and bioremediation. Future research areas have been suggested.
Collapse
|
10
|
Huang R, Wan B, Hultz M, Diaz JM, Tang Y. Phosphatase-Mediated Hydrolysis of Linear Polyphosphates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1183-1190. [PMID: 29359927 DOI: 10.1021/acs.est.7b04553] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyphosphates are a group of phosphorus (P) containing molecules that are produced by a wide range of microorganisms and human activities. Although polyphosphates are ubiquitous in aquatic environments and are of environmental significance, little is known about their transformation and cycling. This study characterized the polyphopshate-hydrolysis mechanisms of several representative phosphatase enzymes and evaluated the effects of polyphosphate chain length, light condition, and calcium (Ca2+). 31P nuclear magnetic resonance (NMR) spectroscopy was used to monitor the dynamic changes of P molecular configuration during polyphosphate hydrolysis and suggested a terminal-only degradation pathway by the enzymes. Such mechanism enabled the quantification of the hydrolysis rates by measuring orthophosphate production over time. At the same initial concentration of polyphosphate molecules, the hydrolysis rates were independent of chain length. The hydrolysis of polyphosphate was also unaffected by light condition, but was reduced by the presence of Ca2+. The released orthophosphates formed Ca-phosphate precipitates in the presence of Ca2+, likely in amorphous phases. Results from this study lay the foundation for better understanding the chemical processes governing polyphosphate transport and transformation in various environmental settings.
Collapse
Affiliation(s)
- Rixiang Huang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| | - Biao Wan
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| | - Margot Hultz
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| | - Julia M Diaz
- Department of Marine Sciences, Skidaway Institute of Oceanography, University of Georgia , Savannah, Georgia 31411, United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30324-0340, United States
| |
Collapse
|
11
|
Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S. Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)], and humic acid. 3 Biotech 2017; 7:262. [PMID: 28744429 PMCID: PMC5524630 DOI: 10.1007/s13205-017-0900-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/19/2017] [Indexed: 11/29/2022] Open
Abstract
The present study was intended to investigate the biodegradation of acephate in aqueous media in the presence and in the absence of metal ions [Fe(III) and Cu(II)], and humic acid (HA). Biodegradations were performed using Pseudomonas pseudoalcaligenes PS-5 (PS-5) isolated from the heavy metal polluted site. Biodegradations were monitored by UV-Visible, FTIR, and electron spray ionization-mass spectrometry (ESI-MS) analyses. ESI-MS analysis revealed that PS-5 degraded acephate to two metabolites showing intense ions at mass-to-charge ratios (m/z) 62 and 97. The observed kinetic was the pseudo-first order, and half-life periods (t1/2) were 2.79 d-1 (of PS-5 + acephate), 3.45 d-1 [of PS-5 + acephate + Fe(III)], 3.16 d-1 [of PS-5 + acephate + Cu(II)], and 5.54 d-1 (of PS-5 + acephate + HA). A significant decrease in degradation rate of acephate was noticed in the presence of HA, and the same was confirmed by UV-Visible and TGA analyses. Strong aggregation behavior of acephate with humic acid in aqueous media was the major cause behind the slow degradation rate of acephate . New results on acephate metabolism by strain PS-5 in the presence and in the absence of metal ions [Fe(III) and Cu(II)] and humic acid were obtained. Results confirmed that Pseudomonas pseudoalcaligenes strain PS-5 was capable of mineralization of the acephate without formation of toxic metabolite methamidophos. More significantly, the Pseudomonas pseudoalcaligenes strain PS-5 could be useful as potential biological agents in effective bioremediation campaign for multi-polluted environments.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab 144002 India
| | - Vijay Kumar
- Regional Pesticides Testing Laboratory, Chandigarh, 160030 India
- Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh 474009 India
| | - Niraj Upadhyay
- Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 462007 India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab 144002 India
| | - Sourav Singla
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab 144002 India
| | - Shivika Datta
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab 144002 India
| |
Collapse
|
12
|
Mvila BG, Pilar-Izquierdo MC, Busto MD, Perez-Mateos M, Ortega N. Synthesis and characterization of a stable humic-urease complex: application to barley seed encapsulation for improving N uptake. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2981-2989. [PMID: 26381854 DOI: 10.1002/jsfa.7466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Most N fertilizers added to soil are not efficiently used by plants and are lost to the atmosphere or leached from the soil, causing environmental pollution and increasing cost. Barley seed encapsulation in calcium alginate gels containing free or immobilized urease to enhance plant utilization of soil N was investigated. RESULTS Urease was immobilized with soil humic acids (HA). A central composite face-centered design was applied to optimize the immobilization process, reaching an immobilization yield of 127%. Soil stability of urease was enhanced after the immobilization. Seed encapsulation with free urease (FU) and humic-urease complex (HUC) resulted in a urease activity retention in the coating layer of 46% and 24%, and in germination rates of 87% and 92%, respectively. Under pot culture conditions, the pots planted with seeds encapsulated with FU and HUC showed higher ammonium N (NH4 (+) -N) (26% and 64%, respectively) than the control soil at 28 days after planting (DAP). Moreover, the seed encapsulation with FU and HUC increased the N uptake 83% and 97%, respectively, at 35 DAP. CONCLUSION Seed encapsulation with urease could substantially contribute to enhancing plant N nutrition in the early stages of seedling establishment. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beaufray G Mvila
- Department of Biotechnology and Food Science, Area of Biochemistry and Molecular Biology, University of Burgos, E-09001, Burgos, Spain
| | - María C Pilar-Izquierdo
- Department of Biotechnology and Food Science, Area of Biochemistry and Molecular Biology, University of Burgos, E-09001, Burgos, Spain
| | - María D Busto
- Department of Biotechnology and Food Science, Area of Biochemistry and Molecular Biology, University of Burgos, E-09001, Burgos, Spain
| | - Manuel Perez-Mateos
- Department of Biotechnology and Food Science, Area of Biochemistry and Molecular Biology, University of Burgos, E-09001, Burgos, Spain
| | - Natividad Ortega
- Department of Biotechnology and Food Science, Area of Biochemistry and Molecular Biology, University of Burgos, E-09001, Burgos, Spain
| |
Collapse
|
13
|
Busato JG, Papa G, Canellas LP, Adani F, de Oliveira AL, Leão TP. Phosphatase activity and its relationship with physical and chemical parameters during vermicomposting of filter cake and cattle manure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1223-1230. [PMID: 25872004 DOI: 10.1002/jsfa.7210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Recycling of phosphorus (P) from organic residues (ORs) is important to develop environmentally friendly agriculture. The use of this P source depends on phosphatase enzymes, which can be affected by a chain of parameters during maturation of ORs. In this study the phosphatase activity levels throughout vermicomposting of filter cake (FC) and cattle manure (CM) were correlated with different physical and chemical parameters in an effort to increase the knowledge about recycling of P from ORs. RESULTS FC presented higher total nitrogen content (TNC), total organic carbon (TOC), humic acid (HA) content, water-soluble P (WSP), phosphatase activities and nanopore volume than CM during vermicomposting. Decreases in TOC of CM resulted from carbohydrate mineralization, which was not observed for FC. CM showed increased hydrophobic index during vermicomposting while FC showed a slight decrease. CONCLUSION Phosphatase activities correlated positively with TOC, pH and WSP and negatively with HA content for both vermicomposts. Nanopore volume was negatively correlated with phosphatase activities for FC but not for CM. No correlations between hydrophobicity and phosphatase activities were found for FC. Increased hydrophobicity throughout vermicomposting of CM could be partially associated with decreases in phosphatase levels.
Collapse
Affiliation(s)
- Jader Galba Busato
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Caixa Postal 4508, CEP 70910-970, Brasília, (DF), Brazil
| | - Gabriella Papa
- Gruppo RICICLA, Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 02, I-20133, Milan (MI), Italy
| | - Luciano Pasqualoto Canellas
- NUDIBA, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, CEP 28013-303, Campos dos Goytacazes, (RJ), Brazil
| | - Fabrizio Adani
- Gruppo RICICLA, Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 02, I-20133, Milan (MI), Italy
| | - Aline Lima de Oliveira
- Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-970, Brasília, (DF), Brazil
| | - Tairone Paiva Leão
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Caixa Postal 4508, CEP 70910-970, Brasília, (DF), Brazil
| |
Collapse
|
14
|
Redmile-Gordon M, Evershed R, Hirsch P, White R, Goulding K. Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. SOIL BIOLOGY & BIOCHEMISTRY 2015; 88:257-267. [PMID: 26339106 PMCID: PMC4534311 DOI: 10.1016/j.soilbio.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/08/2015] [Accepted: 05/26/2015] [Indexed: 05/24/2023]
Abstract
An emerging paradigm in soil science suggests microbes can perform 'N mining' from recalcitrant soil organic matter (SOM) in conditions of low N availability. However, this requires the production of extracellular structures rich in N (including enzymes and structural components) and thus defies stoichiometric expectation. We set out to extract newly synthesised peptides from the extracellular matrix in soil and compare the amino acid (AA) profiles, N incorporation and AA dynamics in response to labile inputs of contrasting C/N ratio. Glycerol was added both with and without an inorganic source of N (10% 15N labelled NH4NO3) to a soil already containing a large pool of refractory SOM and incubated for 10 days. The resulting total soil peptide (TSP) and extracellular pools were compared using colorimetric methods, gas chromatography, and isotope ratio mass spectrometry. N isotope compositions showed that the extracellular polymeric substance (EPS) contained a greater proportion of products formed de novo than did TSP, with hydrophobic EPS-AAs (leucine, isoleucine, phenylalanine, hydroxyproline and tyrosine) deriving substantially more N from the inorganic source provided. Quantitative comparison between extracts showed that the EPS contained greater relative proportions of alanine, glycine, proline, phenylalanine and tyrosine. The greatest increases in EPS-peptide and EPS-polysaccharide concentrations occurred at the highest C/N ratios. All EPS-AAs responded similarly to treatment whereas the responses of TSP were more complex. The results suggest that extracellular investment of N (as EPS peptides) is a microbial survival mechanism in conditions of low N/high C which, from an evolutionary perspective, must ultimately lead to the tendency for increased N returns to the microbial biomass. A conceptual model is proposed that describes the dynamics of the extracellular matrix in response to the C/N ratio of labile inputs.
Collapse
Affiliation(s)
- M.A. Redmile-Gordon
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, BS8 1TS, UK
| | - R.P. Evershed
- Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, BS8 1TS, UK
| | - P.R. Hirsch
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - R.P. White
- Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | |
Collapse
|
15
|
Mazzei P, Piccolo A. Interactions between natural organic matter and organic pollutants as revealed by NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:667-678. [PMID: 25783763 DOI: 10.1002/mrc.4209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Natural organic matter (NOM) plays a critical role in regulating the transport and the fate of organic contaminants in the environment. NMR spectroscopy is a powerful technique for the investigation of the sorption and binding mechanisms between NOM and pollutants, as well as their mutual chemical transformations. Despite NMR relatively low sensibility but due to its wide versatility to investigating samples in the liquid, gel, and solid phases, NMR application to environmental NOM-pollutants relations enables the achievement of specific and complementary molecular information. This report is a brief outline of the potentialities of the different NMR techniques and pulse sequences to elucidate the interactions between NOM and organic pollutants, with and without their labeling with nuclei that enhance NMR sensitivity.
Collapse
Affiliation(s)
- Pierluigi Mazzei
- Centro Interdipartimentale per la Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | - Alessandro Piccolo
- Centro Interdipartimentale per la Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055, Portici, Italy
| |
Collapse
|
16
|
Mazzei P, Fusco L, Piccolo A. Acetone-induced polymerisation of 3-aminopropyltrimethoxysilane (APTMS) as revealed by NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:383-388. [PMID: 24757082 DOI: 10.1002/mrc.4076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
We followed the reactivity of acetone with 3-aminopropyltrimethoxysilane, a potential organosilane coupling agent, by (1)H, (13)C and (29)Si NMR spectroscopy. Selective 1D and 2D-edited NMR experiments significantly contributed to simplify the spectral complexity of reaction solution and elucidated molecular structures within progressive reaction phases. The course of the 3-aminopropyltrimethoxysilane reaction with acetone was shown by a progressive decrease of both reactants, and a concomitant appearance of water and methanol, due to formation of imine and hydrolysis of alkoxysilane groups, respectively. The occurrence of multiple siloxane linkages in a progressively larger cross-linked macromolecular structure was revealed by DOSY-NMR experiments and new signals in (29)Si-NMR spectra at different reaction times. The NMR approach described here may be applied to investigate the reactivity of other γ-aminopropylalkoxysilanes and contribute to define procedures for the preparation of silica-based materials.
Collapse
Affiliation(s)
- Pierluigi Mazzei
- Centro Interdipartimentale per la Risonanza Magnetica Nucleare, Università di Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | | | | |
Collapse
|
17
|
Fischer K, Majewsky M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 2014; 98:6583-97. [PMID: 24866947 DOI: 10.1007/s00253-014-5826-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.
Collapse
Affiliation(s)
- Klaus Fischer
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, 54296, Trier, Germany,
| | | |
Collapse
|