1
|
Zhang M, Feng M, Xu Z, Li J, Peng C. Electrokinetically-delivered persulfate coupled with thermal conductive heating for remediation of petroleum hydrocarbons contaminated low permeability soil. CHEMOSPHERE 2024; 356:141914. [PMID: 38588899 DOI: 10.1016/j.chemosphere.2024.141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
In this study, electrokinetically-delivered persulfate (PS) coupled with thermal conductive heating (TCH) method was proposed for the remediation of petroleum hydrocarbons (PHs) contaminated low-permeability soil, based on the investigation of PS injection and activation by different electric field form, effective heating radius of TCH to activate PS, and their influencing factors. The uniform delivery and effective activation of PS were unrealizable by one-dimensional electric field (1 V/cm) with the operation of cathode injection, anode injection, bipolar injection, polarity-reversal, or bipolar injection coupled polarity-reversal, which would result in large spatial difference of soil pH and PHs residual. Similar results were obtained under the two-dimensional symmetric electric field (TEF) due to the large spatial difference in electric field intensity. Superimposed electric field (SEF, 1 V/cm) that based on the intermittent worked electrode groups coupled with polarity-reversal (every 3 h) and bipolar injection (10% PS solution) operation could achieve homogenized mass transfer of PS (53.8-65.7 g/kg, average 60.0 g/kg) in 15 days, due to the positive correlation between electric field intensity and transport of ionic substance. Meanwhile, the difference in decontamination efficiency caused by difference in PS activation efficiency could be reduced, since the heating rod was placed at the position where the concentrations of PS was the lowest, whereat the removal of PHs could not rely on alkali activated PS (cathode), anodic oxidation (anode), and electrochemical activated PS (cathode and anode). The residual concentration of PHs in soil remediated by SEF/PS-TCH was in the range of 640.7-763.8 mg/kg (average 701.5 mg/kg), and the corresponding removal efficiency was 73.3%-77.6% (average75.4%). The research can provide an in-situ remediation method for organic contaminants in low permeability soil featured with more uniform PS injection and activation, and small spatial differences in remediation efficiency.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meiyun Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianan Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China; Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 310000, China.
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Jia X, Wang Y, Zhao M, Zhang F, Li C, Ma D. Migration and morphological transformation patterns of heavy metals on sludge cells and extracellular polymeric substances (EPS) under the influence of different treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21578-21590. [PMID: 38393566 DOI: 10.1007/s11356-024-32398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
The impediment of sludge resource utilization stems from the presence of heavy metals within the sludge matrix. To optimize heavy metal removal techniques from undried sludge, it is essential to study the distribution of heavy metals in the sludge flocs structure and the changes in morphology in the sludge cells after different treatments. In this study, the sludge was subjected to chemical treatments using citric acid (CA), EDTA, and saponin, as well as electrokinetic treatment at 2 V/cm. The distribution and migration of Cu, Ni, and Zn in sludge flocs after various treatment methods were analyzed. The heavy metals were found to migrate from intracellular to extracellular polymeric substances (EPS) without causing extensive sludge cell lysis. They gradually diffused outward with the dispersion of the EPS layer. The migration efficiency of the three heavy metals in the sludge flocs was Zn, Ni, and Cu. This was mainly related to the initial distribution and morphology of the heavy metals. Under the influence of chemicals and an electric field, the acid-soluble and reducible heavy metals in the cells partially migrated to the EPS, while the stable heavy metals transformed into an unstable state. Furthermore, the order of chemical reagents in terms of their effect on the migration efficiency of heavy metals was CA > EDTA > Saponin, owing to the varying binding strengths of heavy metals and their impact on the degree of loosening of the EPS. Especially after CA treatment a greater proportion of Cu, Ni, and Zn were transferred from the cells to the EPS. The acidification effect near the anode during electrokinetic treatment intensifies the migration of heavy metals. This study provides basic research for subsequent engineering optimization aimed at removing heavy metals from sludge.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuxin Wang
- Lianhe Equator Environmental Impact Assessment Co Ltd, Tianjin, 300350, People's Republic of China
| | - Miaomiao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Fan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Chen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Degang Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Li F, Li J, Tong M, Xi K, Guo S. Effect of electric fields strength on soil factors and microorganisms during electro-bioremediation of benzo[a]pyrene-contaminated soil. CHEMOSPHERE 2023; 341:139845. [PMID: 37634583 DOI: 10.1016/j.chemosphere.2023.139845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Electro-bioremediation is a promising technology for remediating soils contaminated with polycyclic aromatic hydrocarbons (PAHs). However, the resulting electrokinetic effects and electrochemical reactions may inevitably cause changes in soil factors and microorganism, thereby reducing the remediation efficiency. To avoid negative effect of electric field on soil and microbes and maximize microbial degradability, it is necessary to select a suitable electric field. In this study, artificial benzo [a]pyrene (BaP)-contaminated soil was selected as the object of remediation. Changes in soil factors and microorganisms were investigated under the voltage of 1.0, 2.0, and 2.5 V cm-1 using chemical analysis, real-time PCR, and high-throughput sequencing. The results revealed noticeable changes in soil factors (pH, moisture, electrical conductivity [EC], and BaP concentration) and microbes (PAHs ring-hydroxylating dioxygenase [PAHs-RHDα] gene and bacterial community) after the application of electric field. The degree of change was related to the electric field strength, with a suitable strength being more conducive to BaP removal. At 70 d, the highest mean extent of BaP removal and PAHs-RHDα gene copies were observed in EK2.0 + BIO, reaching 3.37 and 109.62 times those in BIO, respectively, indicating that the voltage of 2.0 V cm-1 was the most suitable for soil microbial growth and metabolism. Changes in soil factors caused by electric fields can affect microbial activity and community composition. Redundancy analysis revealed that soil pH and moisture had the most significant effects on microbial community composition (P < 0.05). The purpose of this study was to determine the appropriate electric field that could be used for electro-bioremediation of PAH-contaminated soil by evaluating the effects of electric fields on soil factors and microbial communities. This study also provides a reference for efficiency enhancement and successful application of electro-bioremediation of soil contaminated with PAHs.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
4
|
Wang S, Guo S. Effects of soil organic carbon metabolism on electro-bioremediation of petroleum-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132180. [PMID: 37527589 DOI: 10.1016/j.jhazmat.2023.132180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Soil organic carbon (SOC) potentially interacts with microbial metabolism and may affect the degradation of petroleum-derived carbon (PDC) in the electro-bioremediation of petroleum-contaminated soil. This study evaluated the interactions among organic carbon, soil properties, and microbial communities to explore the role of SOC during the electro-bioremediation process. The results showed that petroleum degradation exerted superposition and synergistic electrokinetic and bioremediation effects, as exemplified by the EB and EB-PR tests, owing to the maintenance and enhancement of SOC utilization (P/S value), respectively. The highest P/S value (2.0-2.4) was found in the electrochemical oxidation zone due to low SOC consumption. In the biological oxidation zones, electric stimulation enhanced the degradation of PDC and SOC, with higher average P/S values than those of the Bio test. Soil pH, Eh, inorganic ions, and bioavailable petroleum fractions were the main factors reshaping the microbial communities. SOC metabolism effectively buffered the stress of environmental factors and pollutants while maintaining functional bacterial abundance, microbial alpha diversity, and community similarity, thus saving the weakened PDC biodegradation efficiency in the EB and EB-PR tests. The study of the effect of SOC metabolism on petroleum biodegradation contributes to the development of sustainable low-carbon electro-bioremediation technology.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
5
|
Li M, Huang Y, Li K, Yuan X, Liu H, Li M, Xu T, Zhang Z, Johnson DM, Xi Y. Enhancement of electrokinetic-phytoremediation by Ophiopogon japonicus: stimulation of electrokinetic on root system and improvement of polycyclic aromatic hydrocarbon degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97591-97600. [PMID: 37596476 DOI: 10.1007/s11356-023-29342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Root systems are sensitive to voltage and tend to improve the degradation of organic pollutants by promoting the root exudates and increasing microbial enzyme activity in the rhizosphere under the effect of electrokinetic. In this study, electrokinetic-assisted phytoremediation (EKPR) was applied for the remediation of soil containing phenanthrene (PHE) and pyrene (PYR). Direct current (DC) voltage (1 V cm-1) was applied across the soils for 30 days following 3 treatment schedules (0 h, 4 h, and 12 h per day), referred to as treatments EK0, EK4, and EK12. Electrokinetic assistance improved phytoremediation. Compared to EK0, the removal of PHE and PYR increased by 51.79% and 45.07% for EK4 and by 43.18% and 38.75% for EK12. The applied voltage promoted root growth, stimulated the root exudate release, and increased accumulation of PHE and PYR by plants, and the effect was most pronounced in treatment EK4. Catalase and urease activities in rhizosphere soil also increased, by respective increments of 44.51% and 40.86% for EK4 and by 28.53% and 21.24% for EK12. In this study, we demonstrated that a low voltage applied for an appropriate duration (4 h per day) improves removal of PAHs by stimulating root growth, promoting the root exudate release and enhancing enzyme activity in the microbiome of rhizosphere soil.
Collapse
Affiliation(s)
- Ming Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yingping Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Kun Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Xi Yuan
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Huigang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Meng Li
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Tao Xu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Zhaonian Zhang
- Yichang Environmental Monitoring Station, Yichang, 443002, Hubei, China
| | - David M Johnson
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Ying Xi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China.
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
6
|
Shi C, Tong M, Cai Q, Li Z, Li P, Lu Y, Cao Z, Liu H, Zhao HP, Yuan S. Electrokinetic-Enhanced Bioremediation of Trichloroethylene-Contaminated Low-Permeability Soils: Mechanistic Insight from Spatio-Temporal Variations of Indigenous Microbial Community and Biodehalogenation Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5046-5055. [PMID: 36926893 DOI: 10.1021/acs.est.3c00278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrokinetic-enhanced bioremediation (EK-Bio), particularly bioaugmentation with injection of biodehalogenation functional microbes such as Dehalococcoides, has been documented to be effective in treating a low-permeability subsurface matrix contaminated with chlorinated ethenes. However, the spatio-temporal variations of indigenous microbial community and biodehalogenation activity of the background matrix, a fundamental aspect for understanding EK-Bio, remain unclear. To fill this gap, we investigated the variation of trichloroethylene (TCE) biodehalogenation activity in response to indigenous microbial community succession in EK-Bio by both column and batch experiments. For a 195 day EK-Bio column (∼1 V/cm, electrolyte circulation, lactate addition), biodehalogenation activity occurred first near the cathode (<60 days) and then spread to the anode (>90 days), which was controlled by electron acceptor (i.e., Fe(III)) competition and microbe succession. Amplicon sequencing and metagenome analysis revealed that iron-reducing bacteria (Geobacter, Anaeromyxobacter, Geothrix) were enriched within initial 60 d and were gradually replaced by organohalide-respiring bacteria (versatile Geobacter and obligate Dehalobacter) afterward. Iron-reducing bacteria required an initial long time to consume the competitive electron acceptors so that an appropriate reductive condition could be developed for the enrichment of organohalide-respiring bacteria and the enhancement of TCE biodehalogenation activity.
Collapse
Affiliation(s)
- Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Zhengtao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Zixuan Cao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| |
Collapse
|
7
|
Abou-Shady A, Ali ME, Ismail S, Abd-Elmottaleb O, Kotp YH, Osman MA, Hegab RH, Habib AA, Saudi AM, Eissa D, Yaseen R, Ibrahim GA, Yossif TM, El-Araby H, Selim EMM, Tag-Elden MA, Elwa AES, El-Harairy A. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: process design modifications with brief summaries of main output. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Wang S, Cheng F, Shao Z, Wu B, Guo S. Effects of thermal desorption on ecotoxicological characteristics of heavy petroleum-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159405. [PMID: 36243071 DOI: 10.1016/j.scitotenv.2022.159405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study comprehensively evaluates the ecotoxicity of high-concentration heavy petroleum (HCHP)-contaminated soil before and after thermal desorption (TD) remediation at different temperatures and times. The results showed that the detoxification of contaminated soil was effectively achieved by extending the remediation duration at 400-600 °C. After treatment at 400 °C for 60 min, the toxicological indicators including bioluminescence EC50 (acute toxicity), seed germination ratio (Gr) and plant biomass of Brassica juncea (subacute toxicity), and diversity of the microbial community (chronic toxicity) reached a maximum. The value of the SOS-Induction Factor (SOSIF), characterizing genotoxicity was below 1.5, indicating that it was non-toxic. Pearson's correlation analysis illustrated that the water-soluble fraction (WSF), ALK1-3 and ARO1-3 of petroleum hydrocarbons were the primary sources of ecotoxicity. Notably, although the total ratio of petroleum removed from the soil reached 87.26 ± 4.38 %-98.69 ± 1.61 % under high-temperature thermal desorption (HTTD, 500-600 °C), the ecotoxicity was not lower than that at 400 °C. The pyrolysis products of petroleum macromolecules and extreme changes in soil properties were the leading causes of soil ecotoxicity following HTTD. The inconsistency between the removal of petroleum pollutants and ecological health risks reveals the significance of soil ecotoxicological assessments for identifying TD remediation endpoints and process optimization.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Fenglian Cheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Zhiguo Shao
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
9
|
Okeke ES, Okoye CO, Chidike Ezeorba TP, Mao G, Chen Y, Xu H, Song C, Feng W, Wu X. Emerging bio-dispersant and bioremediation technologies as environmentally friendly management responses toward marine oil spill: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116123. [PMID: 36063698 DOI: 10.1016/j.jenvman.2022.116123] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Marine oil spills emanating from wells, pipelines, freighters, tankers, and storage facilities draw public attention and necessitate quick and environmentally friendly response measures. It is sometimes feasible to contain the oil with booms and collect it with skimmers or burn it, but this is impracticable in many circumstances, and all that can be done without causing further environmental damage is adopting natural attenuation, particularly through microbial biodegradation. Biodegradation can be aided by carefully supplying biologically accessible nitrogen and phosphorus to alleviate some of the microbial growth constraints at the shoreline. This review discussed the characteristics of oil spills, origin, ecotoxicology, health impact of marine oils spills, and responses, including the variety of remedies and responses to oil spills using biological techniques. The different bioremediation and bio-dispersant treatment technologies are then described, with a focus on the use of green surfactants and their advances, benefits/drawbacks. These technologies were thoroughly explained, with a timeline of research and recent studies. Finally, the hurdles that persist as a result of spills are explored, as well as the measures that must be taken and the potential for the development of existing treatment technologies, all of which must be linked to the application of integrated procedures.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria; Natural Science Unit, SGS, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Charles Obinwanne Okoye
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria; Biofuel Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chang Song
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
10
|
Fan R, Tian H, Wu Q, Yi Y, Yan X, Liu B. Mechanism of bio-electrokinetic remediation of pyrene contaminated soil: Effects of an electric field on the degradation pathway and microbial metabolic processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126959. [PMID: 34449353 DOI: 10.1016/j.jhazmat.2021.126959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism of bio-electrokinetic (BIO-EK) remediation to improve the degradation of pyrene was evaluated based on an analysis of the intermediate products and the microbial community. The results show that BIO-EK remediation has a higher pyrene degradation efficiency on pyrene and its intermediate products than the bioremediation and electrokinetic (EK) remediation processes. A series of intermediate products were detected. According to the type of the intermediate products, two degradation pathways, biological metabolism and electrochemical oxidation, are proposed in the BIO-EK remediation of pyrene. Furthermore, the primary microbial taxa involved in the pollutant degradation changed, which led to variations in the functional gene components. The abundant and functional genes related to metabolism were specifically analyzed. The results indicate that the electric field promotes the expression of metabolisms associated with 14 carbohydrates, 13 lipids, 13 amino acids, five energies, and in particular, 11 xenobiotics. These results suggest that in addition to the promotion effect on the microbial metabolism caused by the electric field, BIO-EK remediation can promote the degradation of pollutants due to the coexistence of a microbial metabolic pathway and an electrochemical oxidation pathway.
Collapse
Affiliation(s)
- Ruijuan Fan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China.
| | - Haihua Tian
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Qiong Wu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Yuanyuan Yi
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Xingfu Yan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| | - Bingru Liu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| |
Collapse
|
11
|
Aparicio JD, Espíndola D, Montesinos VN, Litter MI, Donati E, Benimeli CS, Polti MA. Evaluation of the sequential coupling of a bacterial treatment with a physicochemical process for the remediation of wastewater containing Cr and organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126307. [PMID: 34130164 DOI: 10.1016/j.jhazmat.2021.126307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
A restoration strategy was developed for the treatment of two artificial liquid systems (Minimal Medium, MM, and Water Carbon Nitrogen, WCN) contaminated with Cr(VI), lindane (γ-HCH), phenanthrene (Phe), and reactive black 5 (RB5), through the use of an actinobacteria consortium, coupled with a physicochemical treatment using a column filled with nano-scale zero valent iron particles immobilized on dried Macrocystis pyrifera algae biomass. The Sequential Treatment A (STA: physicochemical followed by biological method) removed the three organic compounds with different effectiveness; however, it was very ineffective for Cr(VI) removal. The Sequential Treatment B (STB: biological followed by the physicochemical method) removed the four compounds with variable efficiencies. The removal of γ-HCH, Phe, and RB5 in both effluents did not present significant differences, regardless of the sequential treatment used. The highest removal of Cr(VI) and total Cr was observed in MM and WCN, respectively. Ecotoxicity tests (L. sativa) of the effluents treated with both methodological couplings demonstrated that the toxicity of WCN only decreased at the end of STA, while that of MM decreased at all stages of both sequential treatments. Therefore, MM would be more appropriate to perform both treatments.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Diego Espíndola
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Víctor Nahuel Montesinos
- Gerencia Química, Centro Atómico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Marta Irene Litter
- IIIA (CONICET-UNSAM), Universidad Nacional de General San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 Catamarca, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina.
| |
Collapse
|
12
|
Huang Y, He Z, Xu L, Yang B, Hou Y, Lei L, Li Z. Alternating current enhanced bioremediation of petroleum hydrocarbon-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47562-47573. [PMID: 33895947 DOI: 10.1007/s11356-021-13942-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In this work, bioremediation was applied with sinusoidal alternating current (AC) electric fields to remove petroleum hydrocarbon (TPH) for soil remediation. Applying AC electric field with bioremediation (AC+BIO) could efficiently remove 31.6% of the TPH in 21 days, much faster than that in the BIO only system (13.7%) and AC only system (5.5%). When the operation time extended to 119 days, the AC+BIO system could remove 73.3% of the TPH. Applying AC electric field (20-200 V/m) could maintain the soil pH at neutral, superior to the direct current electric field. The maximum difference between soil temperature and the room temperature was 1.9 °C in the AC (50 V/m) +BIO system. The effects of AC voltage gradient (20-200 V/m) on the microorganisms and TPH degradation efficiency by AC+BIO were investigated, and the optimized AC voltage gradient was assessed as 50 V/m for lab-scale experiments. The microbial community structures in the BIO and AC+BIO systems were compared. Although Pseudomonas was the dominant species, Firmicutes became more abundant in the AC+BIO system than the BIO system, indicating their adaptive capacity to the stress of the AC electric field. Real petroleum-contaminated soil was used as a reaction matrix to evaluate the performance of AC+BIO in the field. The initial current density was about 0.2 mA/cm2, voltage gradient was about 20 V/m, and the average TPH degradation rate was 8.1 μg/gdry soil per day. This study provided insights and fundamental supports for the applications of AC+BIO to treat petroleum-polluted soils.
Collapse
Affiliation(s)
- Ying Huang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Zhongwei He
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Polytechnic Institute, Zhejiang University, Hangzhou, 310015, China
| | - Lili Xu
- Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310027, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China.
| |
Collapse
|
13
|
The influence of electrokinetic bioremediation on subsurface microbial communities at a perchloroethylene contaminated site. Appl Microbiol Biotechnol 2021; 105:6489-6497. [PMID: 34417847 DOI: 10.1007/s00253-021-11458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
There is an increased interest in finding remedies for contamination in low permeability and advection-limited aquifers. A technology applicable at these sites, electrokinetic-enhanced bioremediation (EK-BIO), combines traditional bioremediation and electrokinetic technologies by applying direct current to transport bioremediation amendments and microbes in situ. The effect of this technology on the native soil microbial community has only been previously investigated at the bench scale. This research explored the influence of EK-BIO on subsurface microbial communities at a field-scale demonstration site. The results showed that, similar to the findings in laboratory studies, alpha diversity decreased and beta diversity differed temporally, based on treatment phase. Enrichments in specific taxa were linked to the bioaugmentation culture and electron donor. Overall, findings from our study, one of the first field-scale investigations of the influence of electrokinetic bioremediation on subsurface microbial communities, are very similar to bench-scale studies on the topic, suggesting good correlation between laboratory and field experiments on EK-BIO and showing that lessons learned at the benchtop are important and relevant to field-scale implementation. KEY POINTS: • Microbial community analysis of field samples validates laboratory study results • Bioaugmentation cultures and electron donors have largest effect on microbial community.
Collapse
|
14
|
Zhang M, Wu B, Guo P, Wang S, Guo S. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil under the superimposed electric field condition. CHEMOSPHERE 2021; 273:128723. [PMID: 33127102 DOI: 10.1016/j.chemosphere.2020.128723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
An innovative superimposed electric field (SEF) was designed with the aim to achieve uniform removal of polycyclic aromatic hydrocarbons (PAHs) in soil. Also the influence of SEF on the bioremediation efficiency of PAHs was investigated in compared with the common electric field (CEF). Five experiments were conducted in this study, namely EK-CEF (applied CEF), EKB-CEF (CEF enhanced bioremediation), EK-SEF (applied SEF), EKB-SEF (SEF enhanced bioremediation), and Bio (bioremediation). The results indicated that electric field with periodically reversed polarity could effectively prevent the occurrence of large changes in soil pH, temperature, and electric current. The electric field intensity of SEF was concentrated in the range of 0.5-1.5 V/cm, and the difference between the maximum and minimum PAHs removal percentage in EK-SEF was just 5.4%, in comparison to 14.8% in EK-CEF. The bioremediation promoting effect did not show significant difference between SEF and CEF. Compared to Bio, the removal percentages of the 5-ring and 6-ring PAHs attributed to the degrading bacteria were much higher in EKB-SEF and EKB-CEF. Moreover, the microbial number increased with the distance away from electrodes, and the microbial community changed correspondingly. All these would be resulted in differences removal efficiencies among different PAHs components. Despite its intrinsic advantages, the influence of SEF on soil physicochemical and biological properties needs further study.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
15
|
Vaishnavi J, Devanesan S, AlSalhi MS, Rajasekar A, Selvi A, Srinivasan P, Govarthanan M. Biosurfactant mediated bioelectrokinetic remediation of diesel contaminated environment. CHEMOSPHERE 2021; 264:128377. [PMID: 33017706 DOI: 10.1016/j.chemosphere.2020.128377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The present study integrated the electrokinetic (EK) with bioremediation (Bioelectrokinetic -BEK) of diesel hydrocarbon by Staphylococcus epidermidis EVR4. It was identified as efficient biosurfactant producing bacteria and growth parameters was optimized using response surface methodology. Upon degradation, there is a complete disappearance of peaks from nonane (C9) to tricosane (C23) and 85%, 47% of degradation of pentacosane and octacosane respectively. Marine bacterial strain, EVR4 was found to be potential to degrade the diesel with a maximum degradation efficiency of 96% within 4 d, which was due to its synergistic role of biosurfactant and catabolic enzymes (dehydrogenase, catalase and cytochrome C). The application of integrated BEK was an effective insitu method for the remediation of diesel contaminated soil by BEK (84%) than EK (67%). EVR4 as an effective strain can be employed for BIO-EK method to clean the diesel hydrocarbon polluted environment.
Collapse
Affiliation(s)
- Jeevanandam Vaishnavi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, 632115, Tamilnadu, India
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh KSA, P.O. Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh KSA, P.O. Box -2455, Riyadh, 11451, Saudi Arabia.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, 632115, Tamilnadu, India.
| | - Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, 632115, Tamilnadu, India
| | - Palanisamy Srinivasan
- PG & Research Department of Biotechnology, Mahendra Arts and Science College, Kalipatti, 637501, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
16
|
Zhang K, Wang S, Guo P, Guo S. Characteristics of organic carbon metabolism and bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system. CHEMOSPHERE 2021; 264:128521. [PMID: 33039688 DOI: 10.1016/j.chemosphere.2020.128521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 05/25/2023]
Abstract
An innovative mesophilic aerobic biopile technology was explored to improve the bioremediation efficiency of petroleum-contaminated soil. Under the suitable soil conditions (C:N:P at 100:5:1 and soil moisture content at 18%), the soil pH was hold in the range of 7.4 to 6.8 throughout the bioremediation process, the mesophilic (30 °C-40 °C) and forced aeration (3 h-on/1 h-off) conditions were the critical factors to enhancing petroleum biodegradation. The consumption of bioavailable organic carbon (BAC) which was one of the most important factors regulating microbial metabolism, was positively related (R2 = 0.85, 40 °C) with the rate of petroleum removal. The 50% threshold of BAC could be regarded as the signal for supplementing the soil nutrients in the mesophilic aerobic biopiles to favor petroleum removal. The optimal conditions (40 °C, 3 h-on/1 h-off) maximized the utilization of BAC, promoted the petroleum degradation, and remained the microbial abundance and community composition stable to the greatest extent. In addition, the accumulation of aliphatic acids affected the microbial activity, which limited the efficiency of petroleum degradation to a certain extent. Jointly considering the energy consumption, time cost and soil conditions maintenance, a cost-effective biopile technology was obtained by temperature and aeration regulation and BAC supplementation, which could be applied to engineering application.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Penghong Guo
- Arizona State University, Tempe, AZ, 85281, USA.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| |
Collapse
|
17
|
Fan R, Ma W, Zhang H. Microbial community responses to soil parameters and their effects on petroleum degradation during bio-electrokinetic remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142463. [PMID: 33113694 DOI: 10.1016/j.scitotenv.2020.142463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the interactions among total petroleum hydrocarbons (TPH), soil parameters, and microbial communities during the bio-electrokinetic (BIO-EK) remediation process. The study was conducted on a petroleum-contaminated saline-alkali soil inoculated with petroleum-degrading bacteria with a high saline-alkali resistance. The results showed that the degradation of TPH was better explained by second-order kinetics, and the efficacy and sustainability of the BIO-EK were closely related to soil micro-environmental factors and microbial community structures. During a 98-d remediation process, the removal rate of TPH was highest in the first 35 d, and then decreased gradually in the later period, which was concurrent with changes in the soil physicochemical properties (conductivity, inorganic ions, pH, moisture, and temperature) and subsequent shifts in the microbial community structures. According to the redundancy analysis (RDA), TPH, soil temperature, and electric conductivity, as well as SO42-, Cl-, and K+ played a better role in explaining the changes in the microbial community at 0-21 d. However, pH and NO3- better explained the changes in the microbial community at 63-98 d. In particular, the dominant genera, Marinobacter and Bacillus, showed a positive correlation with TPH, conductivity, and SO42-, Cl-, and K+, but a negative relationship with pH and NO3. Rhodococcus was positively correlated with soil temperature. The efficacy and sustainability of the BIO-EK remediation process is likely to be improved by controlling these properties.
Collapse
Affiliation(s)
- Ruijuan Fan
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Wenping Ma
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Hanlei Zhang
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
18
|
Wu Y, Wang S, Cheng F, Guo P, Guo S. Enhancement of electrokinetic-bioremediation by ryegrass: Sustainability of electrokinetic effect and improvement of n-hexadecane degradation. ENVIRONMENTAL RESEARCH 2020; 188:109717. [PMID: 32540569 DOI: 10.1016/j.envres.2020.109717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation-assisted electrokinetic-bioremediation is a novel technology for soil remediation. We aimed to study the effects of a plant (ryegrass) on electrokinetic-bioremediation in n-hexadecane-contaminated soil. After treatment for 40 days, the n-hexadecane degradation ratio of electrokinetic-bioremediation-ryegrass (EK-Bio-RG) was 4.86% higher than that of electrokinetic-bioremediation (EK-Bio) (p < 0.05), with a maximum constant degradation rate (107.23 ± 4.62 mg kg-1· d-1). Owing to the improved electrical conductivity, 73.28% of the initial current was maintained on the 40th day in EK-Bio-RG, which was 1.62 times that in EK-Bio. Furthermore, ryegrass reduced the soil zeta potential, which indicated the alleviation of the soil electric double layer compression and prevention of the aggregation of small soil colloids into larger ones. The fine colloidal structure was conducive to mass transfer in electrokinetic-bioremediation. An analysis of the microbial community showed that the degradation of n-hexadecane was mainly attributable to gram-positive bacteria, and a new microbial community was gradually constructed in the rhizosphere, which still metabolized n-hexadecane. The results indicated that the sustainability of the electrokinetic effect was improved combined with ryegrass, and the harmonious micro-environment in the rhizosphere was constructed which furtherly optimized the EK-Bio technology to remediate organics-polluted soil.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Fenglian Cheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Penghong Guo
- Arizona State University, Tempe, AZ, 85281, USA.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| |
Collapse
|
19
|
Crognale S, Cocarta DM, Streche C, D’Annibale A. Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils. N Biotechnol 2020; 58:38-44. [DOI: 10.1016/j.nbt.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023]
|
20
|
Li F, Guo S, Wang S, Zhao M. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil. CHEMOSPHERE 2020; 254:126880. [PMID: 32957287 DOI: 10.1016/j.chemosphere.2020.126880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy17:0+cy 19:0)/(16:1ω7+18:1ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Mingyang Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
21
|
Lu Q. Insights into the remediation of cadmium-pyrene co-contaminated soil by electrokinetic and the influence factors. CHEMOSPHERE 2020; 254:126861. [PMID: 32348925 DOI: 10.1016/j.chemosphere.2020.126861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The remediation of cadmium-pyrene co-contaminated soil by electrokinetic (EK) and the influence factors were investigated in this study. The artificial contaminated soils were treated for 20 days in EK experimental setups without electrolyte solution reservoirs, to simulate in-situ remediation of unsaturated soil. The results indicated that polarity-reversing electric field had maintained soil pH in the range of 7.27-7.67. Cadmium (Cd) contaminant would aggregate near electrodes, and the average Cd concentration in these areas had reached 72.21 mg/kg (original 51.6 mg/kg), while the value in soil farthest away from electrodes was 33.58 mg/kg. The reasons for Cd aggregated were: the insoluble hydroxide formations attribute to the frequently alternation of acid-base environment, and the decrease of pH and water holding capacity in soil away from electrodes would promote the dissolved Cd movement by electro-osmosis flow. Although the applied electric field could promote the growth and activity of pyrene-degrading microorganisms (PDM), the soluble Cd would be the restriction factor, especially in soil near electrodes. However, the highest (56.38%) pyrene removal efficiency (PRE) was achieved near electrodes due to the synergistic effect of electric filed and PDM, and PRE was positively correlated with the PDM number in soil away from electrodes.
Collapse
Affiliation(s)
- Qiang Lu
- Shanghai Prestige Environmental Engineering Co., LTD., Shanghai, 201499, China.
| |
Collapse
|
22
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|
23
|
Zhang M, Guo P, Wu B, Guo S. Change in soil ion content and soil water-holding capacity during electro-bioremediation of petroleum contaminated saline soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:122003. [PMID: 31901846 DOI: 10.1016/j.jhazmat.2019.122003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/14/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
This study investigated changes in soil ion content and soil water-holding capacity during electro-bioremediation (EK-Bio) of petroleum contaminated saline soil (ion content of 3.92 g/kg). The results indicated that the soil ions surrounded the electrodes with increasing time, thus changing the soil water-holding capacity. According to the Van Genuchten model fitting results, the soil residual water content (θr) increased with the soil ion content, which represented a capacity decrease of the soil water supply. At the end of the EK-Bio experiment, the θr values in the soil near (site A) and far from (site B) the electrodes were 19.1 % and 12.1 %, where the soil ion content was 7.92 g/kg and 0.55 g/kg, respectively. The ion aggregation process significantly impacted the growth of soil microbial. The bacteria numbers decreased when the soil ion content was high (7.41 g/kg, site A) and low (0.84 g/kg, site B) after 70 days of treatment. The applied electric field significantly enhanced the bioremediation efficiency. However, the biodegradation promotion effect was the weakest at site A. The synergistic effect between the applied electric field and degrading bacteria was delayed.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
24
|
Saini A, Bekele DN, Chadalavada S, Fang C, Naidu R. A review of electrokinetically enhanced bioremediation technologies for PHs. J Environ Sci (China) 2020; 88:31-45. [PMID: 31862072 DOI: 10.1016/j.jes.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Since the early 1980's there have been several different strategies designed and applied to the remediation of subsurface environment including physical, chemical and biological approaches. They have had varying degrees of success in remediating contaminants from subsurface soils and groundwater. The objective of this review is to examine the range of technologies for the remediation of contaminants, particularly petroleum hydrocarbons, in subsurfaces with a specific focus on bioremediation and electrokinetic remediation. Further, this review examines the efficiency of remediation carried out by combining bioremediation and electrokinetic remediation. Surfactants, which are slowly becoming the selected chemicals for mobilizing contaminants, are also considered in this review. The current knowledge gaps of these technologies and techniques identified which could lead to development of more efficient ways of utilizing these technologies or development of a completely new technology.
Collapse
Affiliation(s)
- Anish Saini
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Dawit Nega Bekele
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Sreenivasulu Chadalavada
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia.
| |
Collapse
|
25
|
da Silva BM, Maranho LT. Petroleum-contaminated sites: Decision framework for selecting remediation technologies. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120722. [PMID: 31200225 DOI: 10.1016/j.jhazmat.2019.05.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Brício Marcelino da Silva
- Graduate Program in Environmental Management, Positivo University, Rua Professor Pedro Viriato Parigot de Souza, 5300, CEP: 81.280-330, Curitiba, PR, Brazil; Federal Institution of Education, Science and Technology Fluminense, Av. Souza Mota, 350, CEP: 28.060-010, Campos dos Goytacazes, RJ, Brazil
| | - Leila Teresinha Maranho
- Graduate Program in Environmental Management, Positivo University, Rua Professor Pedro Viriato Parigot de Souza, 5300, CEP: 81.280-330, Curitiba, PR, Brazil.
| |
Collapse
|
26
|
Huang H, Tang J, Niu Z, Giesy JP. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. CHEMOSPHERE 2019; 229:418-425. [PMID: 31082709 DOI: 10.1016/j.chemosphere.2019.04.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 03/09/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
An electrokinetics (EK)-enhanced phytoremediation system with ryegrass was constructed to remediate crude oil-polluted soil. The four treatments employed in this study included (1) without EK or ryegrass (CK-NR), (2) EK only (EK-NR), (3) ryegrass only (CK-R), and (4) EK and ryegrass (EK-R). After 30d of ryegrass growth, EK at 1.0 V·cm-1 with polarity reversal (PR-EK) was supplied for another 30 d. The electric current was recorded during remediation. The pH, electrical conductivity, total petroleum hydrocarbon content (TPH), 16S rDNA, functional genes of AlkB, Nah, and Phe, DGGE, and dehydrogenase activity in soil were measured. The physical-chemical indexes of the plant included the length, dry mass, and chlorophyll contents of the ryegrass. Results showed that EK-R removed 18.53 ± 0.53% of TPH, which was higher than that of other treatments (13.34-14.31%). Meanwhile, the values of 16S rDNA, AlkB, Nah, Phe, and dehydrogenase activity in the bulk soil of EK-R all increased. Further clustering analysis with numbers of genes and DGGE demonstrated that EK-R was similar to the ryegrass rhizosphere soils in both EK-R and CK-R, while the EK treatment of EK-NR was similar to that of CK-NR without EK and ryegrass. These results indicate that the PR-EK treatment used in this experiment successfully enlarged the existing scale of the rhizosphere microorganisms, improved microbial activity and enhanced degradation of TPH.
Collapse
Affiliation(s)
- Hua Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhirui Niu
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
27
|
Li B, Zhang Z, Ma Y, Li Y, Zhu C, Li H. Electrokinetic remediation of antibiotic-polluted soil with different concentrations of tetracyclines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8212-8225. [PMID: 30697655 DOI: 10.1007/s11356-019-04294-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the efficacy of electrokinetic remediation of soils polluted with different concentrations of tetracyclines (TCs). Three widely used TCs (oxytetracycline, chlortetracycline, and tetracycline) were selected, and concentrations of 0, 5, 10, 20, and 50 mg/kg (C0, C5, C10, C20, C50) were selected for comparison. Antibiotic-polluted soils with no electric field served as controls. The average removal rates of TCs in different treatments ranged from 25 to 48% after 7-day remediation. The contributing ratios of electrokinetics to TCs removal varied from 22 to 84%. The concentrations of NH4+ increased in soils and electrolytes, which indicated the decomposition of TCs in the electric field. The highest removal amount of TCs was obtained in the C50 treatment, due to efficient reactions of TCs with oxidative radicals generated during the electrolysis. The fluctuant range of pH in the electrolytes was decreased with increasing concentration of TCs, while the soil pH was increased. The removal rate of antibiotic-resistant bacteria (ARB) in the C5 treatment was significantly higher than that in other treatments. The abundance of antibiotic resistance genes (ARGs) increased with the concentrations of TCs in soils. It might result from the induction of increasing selective pressure of antibiotics. Significant removal of ARGs occurred in the C50 treatment (38-60%). In terms of controlling ARB and ARGs, which were more resistant, the electrokinetic technology showed advantageous effects. Above all, electrokinetic technology provides an effective remediation method, especially for TC-polluted soil with a concentration of 20-50 mg/kg.
Collapse
Affiliation(s)
- Binxu Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Zhiguo Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Yanlin Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Yanling Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 of Zhongguancun South Street, Haidian District, Beijing, China.
| |
Collapse
|
28
|
Gao YC, Guo SH, Wang JN, Zhang W, Chen GH, Wang H, Du J, Liu Y, Naidu R. Novel Bacillus cereus strain from electrokinetically remediated saline soil towards the remediation of crude oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26351-26360. [PMID: 29981021 DOI: 10.1007/s11356-018-2495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
A new strain SWH-15 was successfully isolated after initial electrokinetic remediation experiment using the same saline soil sampled from Shengli Oilfield, China. Four methods (morphological and biochemical characteristics, whole-cell fatty acid methyl esters (FAMEs) analysis, 16S rRNA sequence analysis and DNA G + C content and DNA-DNA hybridization analysis) were used to identify the taxonomic status of SWH-15 and confirmed that SWH-15 was a novel species of the Bacillus (B.) cereus group. Then, we assessed the degrading ability of the novel strain SWH-15 to crude oil through a microcosm experiment with four treatments, including control (CK), bioremediation using SWH-15 (Bio), electrokinetic remediation (EK), and combined bioremediation and electrokinetic remediation (Bio + EK). The results showed that the Bio + EK combined remediation treatment was more effective than the CK, Bio, and EK treatments in degrading crude oil contaminants. Bioaugmentation, by addition of the strain SWH-15 had synergistic effect with EK in Bio + EK treatment. Bacterial community analysis showed that electrokinetic remediation alone significantly altered the bacterial community of the saline soil. The addition of the strain SWH-15 alone had a weak effect on the bacterial community. However, the strain SWH-15 boosted the growth of other bacterial species in the metabolic network and weakened the impact of electrical field on the whole bacterial community structure in the Bio + EK treatment.
Collapse
Affiliation(s)
- Yong-Chao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Shu-Hai Guo
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China.
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China.
| | - Jia-Ning Wang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Wen Zhang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Guan-Hong Chen
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Hui Wang
- School of Resources and Environment, University of Jinan, Jinan, 250022, China
| | - Jianhua Du
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
29
|
Selvi A, Aruliah R. A statistical approach of zinc remediation using acidophilic bacterium via an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology. CHEMOSPHERE 2018; 207:753-763. [PMID: 29859487 DOI: 10.1016/j.chemosphere.2018.05.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to isolate an indigenous acidophilic bacterium from tannery effluent contaminated sludge (TECS) sample and evaluate its potentiality towards the removal of zinc using an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology in zinc spiked soil at an initial concentration of 1000 mg/kg. The isolated acidophilic bacterium was characterized by biochemical and 16S rRNA molecular identification and was named as Serratia marcescens SMAR1 bearing an accession no. MG742410 in NCBI database. The effect of pH and inoculum dosage of SMAR 1 strain showed an optimal growth at pH 5.0 and 4% (v/v) respectively. Based on these experimental data, a statistical analysis was done using Design Expert computer software, v11 to study the interaction between the process parameters with respect to zinc reduction as an output response. Electrokinetic experiments were conducted in a customised EK cell under optimised process conditions, employing titanium electrodes. Experiments for zinc removal were demonstrated for bioleaching, electrokinetic (EK) and BEER technology. On comparing, the integrated process was found to evidence as an excellent metal remediation option with a maximum zinc removal of 93.08% in 72 h than plain bioleaching (72.86%) and EK (56.67%) in 96 h. This is the first report of zinc removal in a short period of time using Serratia marcescens. It is therefore concluded that the BEER approach can be regarded as an effective technology in cleaning up the metal contaminated environment with an easy recovery and reuse option within short period of time.
Collapse
Affiliation(s)
- Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| | - Rajasekar Aruliah
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| |
Collapse
|
30
|
Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:309-321. [PMID: 29689534 DOI: 10.1016/j.jenvman.2018.04.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit.
Collapse
Affiliation(s)
- Bimastyaji Surya Ramadan
- Faculty of Environmental Engineering, Institut Teknologi Yogyakarta, Yogyakarta, 55171, Indonesia.
| | - Gina Lova Sari
- Faculty of Engineering, Universitas Singaperbangsa, Karawang, 41361, Indonesia.
| | | | - Agus Jatnika Effendi
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| |
Collapse
|
31
|
Annamalai S, Santhanam M, Selvaraj S, Sundaram M, Pandian K, Pazos M. "Green technology": Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1649-1657. [PMID: 29054631 DOI: 10.1016/j.scitotenv.2017.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of the study is to degrade pollutants as well as to increase the fertility of agricultural soil by starch enhancing electrokinetic (EKA) and electro-bio-stimulation (EBS) processes. Starch solution was used as an anolyte and voltage gradient was about 0.5V/cm. The influence of bacterial mediated process was evaluated in real contaminated farming soil followed by pilot scale experiment. The in-situ formation of β-cyclodextrin from starch in the treatments had also influence on the significant removal of the pollutants from the farming soil. The conductivity of the soil was effectively reduced from 15.5dS/m to 1.5dS/m which corroborates well with the agricultural norms. The bio-stimulation was confirmed by the increase of the phosphorus content in the treated soil. Finally, phytotoxicity assays demonstrated the viability of the developed technique for soil remediation because plant germination percentage was higher in the treated soil in comparison to untreated soil.
Collapse
Affiliation(s)
- Sivasankar Annamalai
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, India; Academy of Scientific and Innovative Research, Karaikudi, Tamil Nadu 630 003, India.
| | - Manikandan Santhanam
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, India; Academy of Scientific and Innovative Research, Karaikudi, Tamil Nadu 630 003, India
| | - Subbulakshmi Selvaraj
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, India; Academy of Scientific and Innovative Research, Karaikudi, Tamil Nadu 630 003, India
| | | | - Kannan Pandian
- Dryland Agricultural Research Station, Tamilnadu Agricultural University, Chettinad 630 102, India
| | - Marta Pazos
- Department of Chemical Engineering, University of Vigo, Lagoas-Marcosende 36310, Spain
| |
Collapse
|
32
|
Tahmasbian I, Safari Sinegani AA, Nguyen TTN, Che R, Phan TD, Hosseini Bai S. Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26485-26496. [PMID: 28948525 DOI: 10.1007/s11356-017-0281-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Ethylenediaminetetraacetic acid (EDTA) used with electrokinetic (EK) to remediate heavy metal-polluted soils is a toxic chelate for soil microorganisms. Therefore, this study aimed to evaluate the effects of alternative organic chelates to EDTA on improving the microbial properties of a heavy metal-polluted soil subjected to EK. Cow manure extract (CME), poultry manure extract (PME) and EDTA were applied to a lead (Pb) and zinc (Zn)-polluted calcareous soil which were subjected to two electric intensities (1.1 and 3.3 v/cm). Soil carbon pools, microbial activity, microbial abundance (e.g., fungal, actinomycetes and bacterial abundances) and diethylenetriaminepentaacetic acid (DTPA)-extractable Pb and Zn (available forms) were assessed in both cathodic and anodic soils. Applying the EK to soil decreased all the microbial variables in the cathodic and anodic soils in the absence or presence of chelates. Both CME and PME applied with two electric intensities decreased the negative effect of EK on soil microbial variables. The lowest values of soil microbial variables were observed when EK was combined with EDTA. The following order was observed in values of soil microbial variables after treating with EK and chelates: EK + CME or EK + PME > EK > EK + EDTA. The CME and PME could increase the concentrations of available Pb and Zn, although the increase was less than that of EDTA. Overall, despite increasing soil available Pb and Zn, the combination of EK with manures (CME or PME) mitigated the negative effects of using EK on soil microbial properties. This study suggested that the synthetic chelates such as EDTA could be replaced with manures to alleviate the environmental risks of EK application.
Collapse
Affiliation(s)
- Iman Tahmasbian
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia.
| | | | - Thi Thu Nhan Nguyen
- Genecology, School of Science, Health, Education and Engineering, University of the Sunshine Coast, QLD, Maroochydore DC, 4558, Australia
| | - Rongxiao Che
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia
| | - Thuc D Phan
- Australian River Institute, Griffith School of Environment, Griffith University, QLD, Nathan, 4111, Australia
| | - Shahla Hosseini Bai
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia
- Genecology, School of Science, Health, Education and Engineering, University of the Sunshine Coast, QLD, Maroochydore DC, 4558, Australia
| |
Collapse
|
33
|
Zhang M, Guo S, Li F, Wu B. Distribution of ion contents and microorganisms during the electro-bioremediation of petroleum-contaminated saline soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1141-1149. [PMID: 28738174 DOI: 10.1080/10934529.2017.1342499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigated the distribution of ion contents and microorganisms during the electro-bioremediation (EK-Bio) of petroleum-contaminated saline soil. The results showed that soil ions tend to accumulate around the electrodes, and the concentration was correlated with the distance from the electrodes. The average soil ion content was 7.92 g/kg around the electrodes (site A) and 0.55 g/kg at the furthest distance from the electrodes (site B) after 112 days of treatment, while the initial average content was 3.92 g/kg. Smooth linear (R2 = 0.98) loss of soil ions was observed at site C, which was closer to the electrodes than site B, and had a final average soil ion content of 1.96 g/kg. The dehydrogenase activity was much higher in EK-Bio test soil than in the Bio test soil after 28 days of treatment, and followed the order: site C > site B > site A. However, the soil dehydrogenase activity dropped continuously when the soil ion reached very high and low concentrations at sites A and B. The soil microbial community varied in sample sites that had different ion contents, and the soil microbial diversity followed the order: site C > site B > site A. The applied electric field clearly enhanced the biodegradation efficiency for soil petroleum contaminants. However, the biodegradation promotion effects were weakening in soils where the ion contents were extremely high and low (sites A and B). These results can provide useful information for EK-Bioremediation of organic-contaminated saline soil.
Collapse
Affiliation(s)
- Meng Zhang
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- b Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Beijing , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| | - Shuhai Guo
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| | - Fengmei Li
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| | - Bo Wu
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| |
Collapse
|
34
|
Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C. Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 2017; 37:1062-1076. [DOI: 10.1080/07388551.2017.1304357] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Haipeng Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
- Changjiang River Scientific Research Institute, Wuhan, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Juan Dai
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
- Changjiang River Scientific Research Institute, Wuhan, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| |
Collapse
|
35
|
Wang H, Lou J, Gu H, Luo X, Yang L, Wu L, Liu Y, Wu J, Xu J. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13378-13388. [PMID: 27026540 DOI: 10.1007/s11356-016-6515-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1.
Collapse
Affiliation(s)
- Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haiping Gu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Li Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Yong Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, China
| | - Jianjun Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
36
|
Khan AHA, Anees M, Arshad M, Muhammad YS, Iqbal M, Yousaf S. Effects of illuminance and nutrients on bacterial photo-physiology of hydrocarbon degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:705-711. [PMID: 27039061 DOI: 10.1016/j.scitotenv.2016.03.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Bacterial photophysiology was previously limited to photoautotrophs. The discovery of bacteriophytochromes in non-photoautotrophs raised a question whether these non-photoautotrophs are affected by the presence or absence of light? In this research work for the first time, bacterial hydrocarbon degradation and biomass production was studied under the influence of nutrients, illuminance (light flux) and time. An experimental model was designed, with six isolated bacterial strains (Pseudomonas poae BA1, Pseudomonas rhizosphaerae BP3, Bacillus thuringiensis BG3, Acinetobacter bouvetii BP18, Pseudomonas proteolytica BG31 and Stenotrophomonas rhizophila BG32) under four different conditions of nutrient media and illuminance at three time intervals of 15, 30, and 45days without shaking. All strains showed statistically higher hydrocarbon degradation under nutrient rich, dark conditions. Highest biodegradation (80.8, 79.4, and 78.7mg) was observed in BG31, BG17 and BG3 respectively. Nutrient rich media along with dark conditions improved the biomass production, and when media was nutrient deprived, higher biomass was produced in the presence of light. This work proved that light and nutrients significantly affect bacterial populations and hydrocarbon degradation. The optimal use of these parameters could facilitate to achieve the goal of remediation of hydrocarbon contaminated sites.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mariam Anees
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Yousaf Shad Muhammad
- Department of Statistics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
37
|
Wang S, Guo S, Li F, Yang X, Teng F, Wang J. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil. Sci Rep 2016; 6:23833. [PMID: 27032838 PMCID: PMC4817206 DOI: 10.1038/srep23833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/15/2016] [Indexed: 12/02/2022] Open
Abstract
This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg−1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg−1·d−1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | | | - Fei Teng
- Shenyang University, Shenyang 110014, China
| | - Jianing Wang
- Institute of Biology, Shandong Academy of Sciences, Jinan 250014, China
| |
Collapse
|
38
|
|