1
|
Li H, Wu J, Qi Y, Su C, Jiang D, Zhou P. Identification of groundwater pollution sources and health risk assessment in the Fengshui mining area of Central Shandong, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24412-24424. [PMID: 38441738 DOI: 10.1007/s11356-024-32713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The crux of groundwater protection lies in a profound understanding of the sources of pollutants and their impacts on human health. This study selected 47 groundwater samples from the Fengshui mining area in central Shandong Province, China, employing advanced hydrogeochemical techniques, positive matrix factorization (PMF), and Monte Carlo analysis methods, aimed at unveiling the characteristics, origins, and health risks of water pollutants. The results indicated that the majority of samples exhibited a slightly alkaline nature. Notably, the concentrations of fluoride (F-) and nitrate (NO3-) exceeded China's safety standards in 40.43% and 23.40% of the samples, respectively. Moreover, a water quality index (WQI) below 50 was observed in approximately 68.09% of the sites, suggesting that the water quality in these areas generally met acceptable levels. However, regions with higher WQI values were predominantly located in the northern and southern parts of the mining area. PMF analysis revealed that regional geological and industrial activities were the primary factors affecting water quality, followed by mining discharges, fundamental geological and agricultural processes, and leachate enrichment activities. The health risk assessment highlighted the heightened sensitivity of the youth demographic to fluoride, with a more pronounced non-carcinogenic risk compared to nitrate, affecting about 31.89% of the youth population. Hence, it is imperative for local authorities and relevant departments to take prompt actions to remediate groundwater contamination to minimize public health risks.
Collapse
Affiliation(s)
- Hongyu Li
- College of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221000, China
| | - Jiaxin Wu
- College of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221000, China
| | - Yueming Qi
- College of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Chengzhi Su
- College of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221000, China
| | - Dan Jiang
- College of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221000, China
| | - Pei Zhou
- College of Resources and Geosciences, China University of Mining and Technology, Xuzhou, 221000, China
| |
Collapse
|
2
|
Ghanbarnezhad M, Parvareh A, Keshavarz Moraveji M, Jorfi S. La, S, N tri-doped TiO2/nickel foam as efficient photoelectrode for degradation of BTX solution under visible light irradiation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Peng H, Chen Y, Li J, Lu J. Energy information flow-based ecological risk transmission among communities within the heavy metals contaminated soil system. CHEMOSPHERE 2022; 287:132124. [PMID: 34523449 DOI: 10.1016/j.chemosphere.2021.132124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
An energy information flow-based ecological risk assessment framework (EIF-ERA) is developed for identifying ecological risk transmission rules among communities (i.e., vegetation E1, herbivorous animals E2, soil microorganisms E3, and carnivorous animals E4) within the heavy metals contaminated soil system. This framework is integrated with numerous techniques of carcinogenic risk evaluation, ecological risk assessment (ERA), and Monte Carlo simulation. Stepwise quadratic response surface analysis (SQRSA) is employed for reflecting the relation between contaminants' concentration and comprehensive risk. Two scenarios with respect to the environmental quality standards (scenarios 1) and carcinogenic risk reversion (scenarios 2) are merged into the EIF-ERA. A real-world mining area in Xinglong County in Chengde is selected to verify the developed framework's effectiveness. Results reveal that E3 is considered as the most sensitive community when contaminant interference occurs, and its 62.3% and 37.7% of comprehensive risk are contributed by initial and direct risks, respectively. Other communities can receive direct risk through control allocation (CA). Monte Carlo anlysis shows that there are 7.68% and 20.25% increase in the initial risk of Cd and Pb when their quantile statistics increase from 70% to 90%. Determination of an appropriate screening value is vital for contaminated mining soil remediation due to its inefficiency of remediation funds, especially when considering the trict standards of contaminants' concentration within scenarios 1. The surrogates obtained from the SQRSA display the relation of contaminant concentration and comprehensive risks with the adjusted R2 greater than 0.77. These findings can be in support of system design, risk assessment, and site remediation.
Collapse
Affiliation(s)
- He Peng
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China
| | - Yizhong Chen
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China.
| | - Jing Li
- Hebei Key Laboratory of Environmental Change and Ecological Construction, College of Resource and Environment Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jingzhao Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| |
Collapse
|
4
|
Li J, Chen Y, Peng H, He L. A system-scale environmental risk analysis with considering a conceptual conversion from material/energy flow to information flow under uncertainties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113775. [PMID: 34555769 DOI: 10.1016/j.jenvman.2021.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
A conceptual conversion from material/energy flow to information flow is presented in this study for evaluating network environment analysis (NEA) within the naphthalene-contaminated groundwater ecosystems under stochastic-fuzzy uncertainties. Four components (i.e., vegetation, herbivore, soil microorganism, and carnivore) are considered into the NEA framework for quantifying their direct and integral ecological risks. Carcinogenic risk related to human health concern is also evaluated under four remediation periods. The developed method is then applied to a power plant site. Results reveal that the average naphthalene concentration after pump-and-treat treatment would significantly decrease from 8.672 to 1.232 μg/L when remediation period extends to 10 years. The probabilities of suffering from carcinogenic risk would reach 0.9862, 0.9566, 0.8746, and 0.6142 under different remediation periods. Soil microorganism would receive more input risk than vegetation owing to its higher vulnerability. Although the upper-layer components (such as herbivore and carnivore) are not exposed to risk sources, they would gradually accumulate to a high-level ecological risk through food chains. Sensitivity analysis shows that variations in standard boundaries would have a significant impact on the risks of all components within groundwater ecosystems. This study can offer a novel perspective and methodology for comprehensively assessing the system-scale environment risks.
Collapse
Affiliation(s)
- Jing Li
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, College of Resources and Environment Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yizhong Chen
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China.
| | - He Peng
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China
| | - Li He
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
5
|
Fayemiwo OM, Daramola MO, Moothi K. Tannin-based adsorbents from green tea for removal of monoaromatic hydrocarbons in water: Preliminary investigations. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1409738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- O. M. Fayemiwo
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - M. O. Daramola
- School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa
| | - K. Moothi
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
6
|
Sepúlveda-Cervantes CV, Soto-Regalado E, Rivas-García P, Loredo-Cancino M, Cerino-Córdova FDJ, García Reyes RB. Technical-environmental optimisation of the activated carbon production of an agroindustrial waste by means response surface and life cycle assessment. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:121-130. [PMID: 29189111 DOI: 10.1177/0734242x17741680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a simultaneous optimisation of technical and environmental parameters for activated carbon production from soybean shells is presented. A 23 factorial design was developed to explore the performance of the technical responses yield and iodine number, and the single score of ReCiPe endpoint method, which was evaluated by means the life cycle assessment. The independent factors included in the design of experiments were the impregnation ratio, temperature, and time activation. Three quadratic equations were obtained and simultaneously optimised by maximisation of the overall desirability function. The principal results of the individual responses indicate that the iodine number is practically independent of the activation temperature in a range of 450 ºC-650 ºC; the yield is inversely proportional to activation time and exhibits minimum values between 500 ºC-600 ºC; and the environmental response single score presents the lowest value at a temperature and time activation of 450 ºC and 30 min, respectively. The most polluting stage of activated carbon production from soybean shells production is the impregnation stage, mainly for the use of ZnCl2 as activating agent and the energy consumption. The simultaneous optimisation of the three responses indicates that the optimal activated carbon should be produced at 180 min, 650 ºC, and an impregnation ratio of 1 g soybean shell g ZnCl2-1.
Collapse
|
7
|
Li J, Lu H, Fan X, Chen Y. Human health risk constrained naphthalene-contaminated groundwater remediation management through an improved credibility method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16120-16136. [PMID: 28537032 DOI: 10.1007/s11356-017-9085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, a human health risk constrained groundwater remediation management program based on the improved credibility is developed for naphthalene contamination. The program integrates simulation, multivariate regression analysis, health risk assessment, uncertainty analysis, and nonlinear optimization into a general framework. The improved credibility-based optimization model for groundwater remediation management with consideration of human health risk (ICOM-HHR) is capable of not only effectively addressing parameter uncertainties and risk-exceeding possibility in human health risk but also providing a credibility level that indicates the satisfaction of the optimal groundwater remediation strategies with multiple contributions of possibility and necessity. The capabilities and effectiveness of ICOM-HHR are illustrated through a real-world case study in Anhui Province, China. Results indicate that the ICOM-HHR would generate double remediation cost yet reduce approximately 10 times of the naphthalene concentrations at monitoring wells, i.e., mostly less than 1 μg/L, which implies that the ICOM-HHR usually results in better environmental and health risk benefits. And it is acceptable to obtain a better environmental quality and a lower health risk level with sacrificing a certain economic benefit.
Collapse
Affiliation(s)
- Jing Li
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Hongwei Lu
- State Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Xing Fan
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Yizhong Chen
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
8
|
Ren L, He L, Lu H, Li J. Rough-interval-based multicriteria decision analysis for remediation of 1,1-dichloroethane contaminated groundwater. CHEMOSPHERE 2017; 168:244-253. [PMID: 27788363 DOI: 10.1016/j.chemosphere.2016.10.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/01/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
A rough-interval-based multicriteria decision analysis method (RI-MCDA) is developed for supporting the selection of remediation strategies for 1,1-dichloroethane contaminated sites. The concept of ''rough interval'' is introduced in the design framework to represent dual-uncertain parameters. Three rough-interval scenarios generated through pair-wise combining the values under three confidence levels (i.e. 68.3%, 95.4% and 99.7%) and one deterministic scenario adopted crisp numbers for parameters are introduced into the framework. The proposed method is then applied to a contaminated site in the Pudong district of Shanghai, China. Fifty remediation alternatives under four duration options (i.e. 5, 10, 15, and 20 years) and ten criteria, including daily total pumping rate, total cost and rough-interval risk information in light of uncertainty parameter (e.g. slope factor), are taken into consideration to compare different alternatives through RI-MCDA. Results indicated that the most desirable remediation strategy lied in A25 for the 5-year, A10 for the 10-year, A15 for the 15-year, and A11 for the 20-year remediation. Compared to the traditional MCDA, the proposed RI-MCDA shows the uniqueness in addressing the interaction between dual intervals of highly uncertain parameters, as well as their joint impact on the decision results, which reduces the subjectivity as much as possible.
Collapse
Affiliation(s)
- Lixia Ren
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Li He
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China.
| | - Hongwei Lu
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Jing Li
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
9
|
Singh P, Ojha A, Borthakur A, Singh R, Lahiry D, Tiwary D, Mishra PK. Emerging trends in photodegradation of petrochemical wastes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22340-22364. [PMID: 27566154 DOI: 10.1007/s11356-016-7373-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO2, ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the "zero concept" of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are more efficient in pilot scale for the demineralization of pollutant.
Collapse
Affiliation(s)
- Pardeep Singh
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India.
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, 110068, India.
| | - Ankita Ojha
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Anwesha Borthakur
- Centre for Studies in Science Policy, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Rishikesh Singh
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India
| | - D Lahiry
- Rajghat Education Centre, KFI, Varanasi, 221005, India
| | - Dhanesh Tiwary
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| |
Collapse
|
10
|
Falciglia PP, Maddalena R, Mancuso G, Messina V, Vagliasindi FGA. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 167:196-205. [PMID: 26686072 DOI: 10.1016/j.jenvman.2015.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/17/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers.
Collapse
Affiliation(s)
- Pietro P Falciglia
- Department of Civil Engineering and Architecture, University of Catania, Via S. Sofia, 64, 95125 Catania, Italy.
| | - Riccardo Maddalena
- Department of Civil Engineering and Architecture, University of Catania, Via S. Sofia, 64, 95125 Catania, Italy
| | - Giuseppe Mancuso
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | - Valeria Messina
- Department of Civil Engineering and Architecture, University of Catania, Via S. Sofia, 64, 95125 Catania, Italy
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Via S. Sofia, 64, 95125 Catania, Italy
| |
Collapse
|