1
|
Guo W, Hao W, Xiao W. Emerging Perfluorinated Chemical GenX: Environmental and Biological Fates and Risks. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:338-351. [PMID: 40270535 PMCID: PMC12012656 DOI: 10.1021/envhealth.4c00164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 04/25/2025]
Abstract
Perfluorinated chemical GenX, formally known as hexafluoropropylene oxide dimer acid (HFPO-DA), has been applied as an alternative to the forever chemical perfluorooctanoic acid (PFOA). The applications of HFPO-DA have rapidly expanded from traditional nonstick coating industries into high-tech semiconductor manufacturing. Because of such facts in conjunction with its low biodegradation rate and high potential of long-distance atmospheric transport, the presence and accumulation of HFPO-DA have been ubiquitously detected in environmental media and biological species, including animals and human beings, posing alarming and urgent needs for the risk assessment of HFPO-DA. Building on the United States Environmental Protection Agency's evaluation of HFPO-DA in 2021, this review first summarizes the interaction of HFPO-DA with the environment, elaborates on its known toxicities and potential carcinogenicity, along with their possible mechanisms, and briefly addresses its current exposure assessment and risk management strategies. These lines of evidence support that the safety of HFPO-DA necessitates further investigation and monitoring, albeit being considered as a less toxic and low persistence substitute of traditional PFOA.
Collapse
Affiliation(s)
- Wanqian Guo
- Department
of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Weidong Hao
- Department
of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, School of Public Health, Peking
University, Beijing 100191, China
- Key
Laboratory of State Administration of Traditional Chinese Medicine
for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Wusheng Xiao
- Department
of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, School of Public Health, Peking
University, Beijing 100191, China
- Key
Laboratory of State Administration of Traditional Chinese Medicine
for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Environmental Medicine, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Oonuki T, Araki T, Oka T, Matsuda H, Shioya N, Kano J, Hibara A, Hasegawa T. Molecular Disaggregation Process of PTFE Using Sodium Chloride: A Study by Infrared Spectroscopy. J Phys Chem B 2025. [PMID: 40245289 DOI: 10.1021/acs.jpcb.5c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Mechanical recycling of polytetrafluoroethylene (PTFE) has long been a crucial matter in fluorocarbon chemistry. Since the molecular aggregation of PTFE is outstandingly strong, fluorocarbon solvents are believed to be necessary for the disaggregation of PTFE, but they should not be used as much as possible because of concerns about environmental impact. Recently, a new technique using solid sodium chloride with the aid of planetary ball milling, instead of using fluorocarbon solvents, has been proposed, and this simple technique works powerfully indeed for the purpose, as confirmed by a significant decrease of crystallinity. Here, we show that the molecular disaggregation process of PTFE using sodium chloride is revealed in detail by infrared (IR) spectroscopy. The spectra clearly show that PTFE is readily crushed into fine particles, and molecular disaggregation within the particles is also recognized. These changes are not found at all in a process that does not use sodium chloride. In addition, the generation of helical defects in perfluoroalkyl chains is also found, which is correlated with molecular disaggregation. In this manner, IR spectroscopy has been found to be a useful tool in providing us rich information on the molecular disaggregation process of PTFE across three different hierarchical structures.
Collapse
Affiliation(s)
- Tomoya Oonuki
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taisuke Araki
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takayuki Oka
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Matsuda
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nobutaka Shioya
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Junya Kano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akihide Hibara
- School of Science, Institute of Science Tokyo, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Zhang W, Li J, Huang R, Zhang X, Wang Y, Zhou D, Xian Q. Effect of coexisting Cd(Ⅱ) and As(V) on anionic PFASs sorption in soils: Models and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125917. [PMID: 39999916 DOI: 10.1016/j.envpol.2025.125917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
An in-depth understanding of the sorption behaviors of per- and polyfluoroalkyl substances (PFASs) in soil is essential to assess their environmental risks accurately. Due to chemical industry production and waste treatment, co-contamination soil of heavy metals (HMs)-PFASs has become a public concern worldwide. This study investigated soil sorption behaviors of PFASs including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorohexanesulfonic acid (PFHxS). A multiple linear regression (MLR) model was developed to predict the sorption of PFOS in soil. Validation results demonstrated that this model could effectively predict the distribution coefficients (Kd) of PFOS based on soil organic carbon (OC), silt, clay, and free Fe/Al-oxide contents, exhibiting a strong predictive ability (r2 = 0.942, p < 0.001). In six soils, HMs (Cd2+ and As5+) influence three anionic PFASs sorption primarily by altering the electrostatic and hydrophobic interactions between soil components and PFASs. The Kd values of PFOS tend to rise with increasing Cd2+ concentration but decline with increasing As5+ concentration. In contrast, HMs have a relatively minor influence on the sorption of PFOA and PFHxS. Moreover, a nonlinear model was constructed for the first time to quantify the impact of HMs on PFASs sorption. The model achieves exceptional prediction accuracy when applied to both experimental data from this study and literature data. A comprehensive understanding of PFASs sorption behavior in soil under conditions of coexisting HMs is of great significance for formulating targeted degradation and mitigation strategies for co-contaminated sites.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jianwei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ruihua Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xueqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Barraud E, Dalmazzone C, Mouret A, De Bruin T, Creton B, Pasquier D, Lachet V, Nieto-Draghi C. A Coarse-Grained Model Describing the Critical Micelle Concentration of Perfluoroalkyl Surfactants in Ionic Aqueous Phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7272-7282. [PMID: 40085480 DOI: 10.1021/acs.langmuir.4c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
In this study, dissipative particle dynamics (DPD) simulations were employed to determine the critical micelle concentration (CMC) of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in ionic aqueous solutions. This approach provides precise CMC data for PFAS surfactants in the presence of various ionic species, thereby addressing a gap in the current literature. Additionally, this study contributes to the development of open-source molecular force fields for charged perfluorinated compounds, which are currently limited. These models incorporate hydration free energy values obtained from density functional theory (DFT) and account for ionic interactions through a well-established linear relationship. Hydrophobic interactions between the surfactant tail and water were fine-tuned to match the CMC of chosen surfactants. Then, the DPD models successfully predicted CMC values for a diverse range of surfactants, including those based on hydrocarbons and PFAS, demonstrating the ability to represent realistic salinities encountered in natural waters. Experimental validation of the methodology was conducted using sodium n-nonyl sulfate (SNS) and sodium n-dodecyl sulfate (SDS) via interfacial tension measurements, confirming the accurate representation of the CMC changes with salinity. This study enhances our understanding of the behavior of PFAS surfactants in ionic aqueous solutions and provides a valuable tool for predicting CMC values in complex environmental systems.
Collapse
Affiliation(s)
- Eddy Barraud
- IFP Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| | - Christine Dalmazzone
- IFP Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| | - Aurélie Mouret
- IFP Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| | - Theodorus De Bruin
- IFP Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| | - Benoit Creton
- IFP Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| | - David Pasquier
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, 69360 Solaize, France
| | - Véronique Lachet
- IFP Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| | - Carlos Nieto-Draghi
- IFP Energies nouvelles, 1 et 4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| |
Collapse
|
5
|
Sheng Y, Wang T, Zhang H, Ma L, Li Y, Zhang S, Hu D. Rheological properties of highly stable foams co-stabilized by nanoparticles and xanthan gum or guar gum. Int J Biol Macromol 2025; 307:141908. [PMID: 40068756 DOI: 10.1016/j.ijbiomac.2025.141908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Highly stable foams co-stabilized by nanoparticles (NPs) and biopolymer have good foaming ability and foam stability, which ensures the reliability and efficiency of the foam during the fire extinguishing process. It is worth noting that the addition of NPs and biopolymers significantly affects the flow characteristics of the foam in the pipeline and its structural stability, which play a key role in the fire extinguishing process. Therefore, it is very important to understand the effect of the addition of different types of biopolymers on the rheological properties of nano-stabilized foams. In this paper, the effects of the two biomacromolecular polymers, xanthan gum (XG) and guar gum (GG), on rheological properties of highly stable foams of FS-50/APG-0810/nano-β-Al2O3 were investigated. The results showed that the stability and viscoelasticity of mixed dispersions in the presence of both NPs and biopolymer were significantly higher than in the presence of NPs alone. Compared with XG, GG exhibited better foam stability, flow behavior, and viscoelasticity when interacting with NPs, and the corresponding foam formed has a higher capacity of shear resistance. This study can provide theoretical support for the development of firefighting foam with NPs and biopolymer stability.
Collapse
Affiliation(s)
- Youjie Sheng
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China.
| | - Tiantian Wang
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Hanling Zhang
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Li Ma
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Yang Li
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Shanwen Zhang
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| | - Die Hu
- College of Safety Science and Engineering, Xi'an University of Science and Technology, 710054, China
| |
Collapse
|
6
|
Ferreira MPS, Ferreira I, Pais V, Leite L, Bessa J, Cunha F, Fangueiro R. Towards Perfluoroalkyl and Polyfluoroalkyl Substance (PFAS)-Free Energy Harvesting: Recent Advances in Triboelectric Nanogenerators for Sports Applications. MICROMACHINES 2025; 16:313. [PMID: 40141924 PMCID: PMC11944490 DOI: 10.3390/mi16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Triboelectric nanogenerators (TENGs) can convert the mechanical energy of physical activities into electricity. This is particularly useful in sports applications, where physical activity can power devices such as wearables that can provide real-time feedback on athletes' performance or health. To work, a TENG usually needs tribopositive and tribonegative materials. Currently, the vast majority of TENGs use materials containing perfluoroalkyl and polyfluoroalkyl substances (PFAS) as tribonegative materials. However, these substances pose risks to humans and the environment, which has led the European Union to consider restrictions on these compounds. For this reason, PFAS-free alternatives, such as polydimethylsiloxane (PDMS) and MXenes, need to be better explored to replace PFAS materials while aiming to achieve equal efficiency. This review will explore some of the recent advances that have been developed in the field of PFAS-free TENGs, with an emphasis on sports applications.
Collapse
Affiliation(s)
- Mónica P. S. Ferreira
- Fibrenamics—Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Inês Ferreira
- Fibrenamics—Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Vânia Pais
- Fibrenamics—Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Liliana Leite
- Fibrenamics—Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - João Bessa
- Fibrenamics—Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Fernando Cunha
- Fibrenamics—Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Raúl Fangueiro
- Fibrenamics—Institute for Innovation in Fiber-Based Materials and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
7
|
Bonnet B, Sharpe MK, Seisenbaeva G, Yeung LWY, Ross I, Ahrens L. Decontamination and Surface Analysis of PFAS-Contaminated Fire Suppression System Pipes: Effects of Cleaning Agents and Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2222-2232. [PMID: 39846395 PMCID: PMC11800388 DOI: 10.1021/acs.est.4c09474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C). The content of the remaining fluorine (F)-containing compounds on the pipe surfaces was evaluated for the first time using time-of-flight elastic recoil detection (ToF-ERD). The results showed that a 20% BC aqueous solution heated to 70 °C removed up to 40 μg/cm2 ∑PFAS from surfaces via soaking (targeted analysis). Treatment with 20% BC was 2- to 8-fold more effective than tap water at 70 °C and 10- to 20-fold more effective than tap water at 20 °C. Total fluorine analysis determined by combustion ion chromatography showed a 2- to 8-fold higher F-equivalent compared to targeted analysis in the cleaning solution after treatment, indicating the presence of a significant amount of polyfluoroalkyl PFAS. Surface analysis with ToF-ERD confirmed partial F removal from pipe surfaces throughout consecutive soaking intervals, with residual F remaining on pipe surfaces after treatment, leaving the risk of PFAS rebound into F-free firefighting foams. Furthermore, supramolecular assemblies of PFAS with at least 70 PFOS molecules/nm2 were identified by ToF-ERD on pipe interior surfaces.
Collapse
Affiliation(s)
- Björn Bonnet
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 75651, Sweden
| | - Matthew K. Sharpe
- Surrey
Ion Beam Centre, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
| | - Gulaim Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 75651, Sweden
| | - Leo W. Y. Yeung
- SMTM
Research Centre, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ian Ross
- CDM
Smith, 220 Montgomery
Street. Suite 1418, San Francisco, California 94104 USA, United States
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 75651, Sweden
| |
Collapse
|
8
|
Tang L, Zhu J, Zhuge S, Yu J, Jiang G. Perfluorooctane sulfonate induces hepatotoxicity through promoting inflammation, cell death and autophagy in a rat model. J Toxicol Sci 2025; 50:45-55. [PMID: 39894534 DOI: 10.2131/jts.50.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is reported to cause hepatotoxicity in animals and humans. However, the underlying mechanism by which it affects organelle toxicity in the liver are not well elucidated yet. This study aimed to investigate the mechanisms underlying PFOS-induced hepatic toxicity, focusing on inflammation, cell death, and autophagy. We established a PFOS-exposed Sprague-Dawley (SD) rat liver injury model by intraperitoneal injection of PFOS (1 mg/kg and 10 mg/kg body weight) every alternate day for 15 days. Our findings indicated that PFOS increased liver weight, caused lipid disorder and hepatic steatosis in rats. Meanwhile, PFOS disrupted the structure of mitochondria, increased accumulation of reactive oxygen species (ROS), repressed superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels, and elevated malondialdehyde (MDA) and nitric oxide synthase (NOS) amounts. We found PFOS induced inflammation as evidenced by activation of NOD-like receptor protein 3 (NLRP3), Cleaved cysteine-aspartic acid protease (caspase)1, tumor necrosis factor (TNF)α and interleukin (IL)-1β levels. Moreover, PFOS exposure significantly decreased B-cell lymphoma2 (Bcl2)/Bcl2 associated X (Bax) ratio and increased the protein expression of Cleaved caspase-3. Compared with the control group, PFOS upregulated the protein expression of necroptotic markers and autophagy-related proteins. In conclusion, PFOS induced inflammation, cell death, and autophagy through oxidative stress by ROS overload, thereby providing a mechanistic explanation for PFOS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Jianjun Zhu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Sheng Zhuge
- Department of Surgery, The First People's Hospital of Yuhang District
| | - Jiawen Yu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| |
Collapse
|
9
|
Rafi A, Deiana L, Alimohammadzadeh R, Engstrand P, Granfeldt T, Nyström SK, Cordova A. Birch-Bark-Inspired Synergistic Fabrication of High-Performance Cellulosic Materials. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:2554-2563. [PMID: 39741584 PMCID: PMC11684174 DOI: 10.1021/acssusresmgt.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 01/03/2025]
Abstract
There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.g., epichlorohydrin and fluorocarbons). Herein, we present an eco-friendly, high-yield, industrially relevant, and scalable method inspired by birch bark for fabricating hydrophobic and strong cellulosic materials. This was accomplished by combining simple surface modification of cellulosic fibers in water using colloidal particles of betulin, an abundant triterpene extracted from birch bark, with sustainable chemical engineering (e.g., lignin modification and hot-pressing). This led to a transformative process that not only altered the morphology of the cellulosic materials into a more dense and compact structure but also made them hydrophobic (contact angles of up to >130°) with the betulin particles undergoing polymorphic transformations from prismatic crystals (betulin III) to orthorhombic whiskers (betulin I). Significant synergistic effects are observed, resulting in a remarkable increase in wet strength (>1400%) of the produced hydrophobic cellulosic materials.
Collapse
Affiliation(s)
- Abdolrahim
A. Rafi
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Luca Deiana
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Rana Alimohammadzadeh
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Per Engstrand
- FSCN
Research Center, High Yield Pulp Technology, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Thomas Granfeldt
- FSCN
Research Center, High Yield Pulp Technology, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Staffan K. Nyström
- FSCN
Research Center, High Yield Pulp Technology, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| | - Armando Cordova
- FSCN
Research Center, Organic Chemistry, Mid
Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden
| |
Collapse
|
10
|
Kim-Fu ML, Moll AR, Hernandez EE, Droz B, Fouquet TNJ, Field J. Fluorinated aromatic PBCTF and 6:2 diPAP in bridge and traffic paints. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2158-2165. [PMID: 39555575 PMCID: PMC11634627 DOI: 10.1039/d4em00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are reported in residential and commercial paints, but there are no data for paints used in the transportation sector. From 2023 to 2024, 16 traffic paints and 10 bridge paints were collected from Pacific Northwest regional transportation facilities or purchased and analyzed for total fluorine by 19F-nuclear magnetic resonance (NMR) spectroscopy, volatile PFAS by gas chromatography-mass spectrometry (GC-MS), and ionic target and suspect PFAS by liquid chromatography-quadrupole time-of-flight mass spectrometry. The only target PFAS identified was 6:2 fluorotelomer phosphate diester (diPAP) which ranged in concentrations from 0.065 to 13 μg g-1. While 6:2 diPAP is not regulated in paints, it can undergo environmental transformation to act as a source of perfluoroalkyl carboxylic acids. A combination of 19F-NMR and GC-MS was used to quantify and identify the fluorinated aromatic PFAS, parachlorobenzotrifluoride (PCBTF), at concentrations from 440 to 16 000 μg g-1 in bridge paints, thus PCBTF may contribute to work exposure and levels in urban air. Additionally, evolved gas analysis with mass spectrometry and pyrolysis-GC-MS established that the insoluble fraction of paints is not comprised of fluoropolymers. Based on the amount of paint required per kilometer, we estimate up to 0.20-2.30 g 6:2 diPAP per kilometer depending on marking type. Therefore, traffic paint may be a potential source of the PFAS detected in urban runoff.
Collapse
Affiliation(s)
- Mitchell L Kim-Fu
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Ansel R Moll
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | - Boris Droz
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | - Jennifer Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
11
|
Srivastava P, Douglas G, Davis GB, Kookana RS, Nguyen CTT, Williams M, Bowles K, Kirby JK. Leachability of per- and poly-fluoroalkyl substances from contaminated concrete. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2227-2239. [PMID: 39498763 DOI: 10.1039/d4em00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The historical use and storage of aqueous film-forming foams (AFFF) containing per- and poly-fluoroalkyl substances (PFAS) at a range of sites including airports, defence, and port facilities have resulted in a legacy of contaminated infrastructure such as concrete. Contaminated concrete constitutes an ongoing source of PFAS contamination requiring management to ensure the protection of human health and the environment. In this study, modified Leaching Environmental Assessment Framework (LEAF) and Australian Standard Leaching Procedure (ASLP) were used to examine the leachability of PFAS, specifically, perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS) and perfluorohexanoic acid (PFHxA) from AFFF-contaminated concrete collected from an Australian Defence Fire Training Area (FTA). In general, PFAS readily leached from intact contaminated concrete monoliths with the cumulative proportion (%) decreasing in the order: PFHxA (>95%) > PFOS (26-84%) ≈ PFHxS (14-78%) > PFOA (<1-54%). Higher leachability for PFHxA from concrete is consistent with previous findings for solids, however, inconsistent for PFOA with higher retention (lower leachability) in concrete as compared to PFOS. Duration of exposure to water (0.5-48 h) and temperature (25 °C and 50 °C) had little influence on the proportion of PFAS leachability from powdered concrete. A higher proportion of PFAS leached from a <2 mm concrete powder size fraction as compared to 2-20 mm and 20 mm size fractions. This behavior reflects an increase in surface area with decreasing concrete particle size. Reducing the particle size could enhance PFAS removal from waste concrete.
Collapse
Affiliation(s)
- Prashant Srivastava
- Commonwealth Scientific and Industrial Research Organization, Environment Research Unit, Industry Environments Program, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Grant Douglas
- Commonwealth Scientific and Industrial Research Organization, Environment Research Unit, Industry Environments Program, 7 Conlon St., Waterford, WA 6152, Australia
| | - Greg B Davis
- Commonwealth Scientific and Industrial Research Organization, Environment Research Unit, Industry Environments Program, 7 Conlon St., Waterford, WA 6152, Australia
| | - Rai S Kookana
- Commonwealth Scientific and Industrial Research Organization, Environment Research Unit, Industry Environments Program, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Canh Tien Trinh Nguyen
- Commonwealth Scientific and Industrial Research Organization, Environment Research Unit, Industry Environments Program, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Mike Williams
- Commonwealth Scientific and Industrial Research Organization, Environment Research Unit, Industry Environments Program, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Karl Bowles
- Jacobs, L7/177 Pacific Hwy, North Sydney, 2060, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jason K Kirby
- Commonwealth Scientific and Industrial Research Organization, Environment Research Unit, Industry Environments Program, Waite Campus, Urrbrae, SA 5064, Australia.
| |
Collapse
|
12
|
Prada AF, Scott JW, Green L, Hoellein TJ. Microplastics and per- and polyfluoroalkyl substances (PFAS) in landfill-wastewater treatment systems: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176751. [PMID: 39378946 DOI: 10.1016/j.scitotenv.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Landfills and wastewater treatment plants (WWTP) are point sources for many emerging contaminants, including microplastics and per- and polyfluoroalkyl substances (PFAS). Previous studies have estimated the abundance and transport of microplastics and PFAS separately in landfills and WWTPs. In addition, previous studies typically report concentrations of microplastics as particle count/L or count/g sediment, which do not provide the information needed to calculate mass balances. We measured microplastics and PFAS in four landfill-WWTP systems in Illinois, USA, and quantified mass of both contaminants in landfill leachate, WWTP influent, effluent, and biosolids. Microplastic concentrations in WWTP influent were similar in magnitude to landfill leachates, in the order of 102 μg plastic/L (parts-per-billion). In contrast, PFAS concentrations were higher in leachates (parts-per-billion range) than WWTP influent (parts-per-trillion range). After treatment, both contaminants had lower concentrations in WWTP effluent, although were abundant in biosolids. We concluded that WWTPs reduce PFAS and microplastics, lowering concentrations in the effluent that is discharged to nearby surface waters. However, partitioning of both contaminants to biosolids may reintroduce them as pollutants when biosolids are landfilled or used as fertilizer.
Collapse
Affiliation(s)
- Andres F Prada
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - John W Scott
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | - Lee Green
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Timothy J Hoellein
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
13
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
14
|
Chang NY, Eichler CMA, Amparo DE, Zhou J, Baumann K, Cohen Hubal EA, Surratt JD, Morrison GC, Turpin BJ. Indoor air concentrations of PM 2.5 quartz fiber filter-collected ionic PFAS and emissions to outdoor air: findings from the IPA campaign. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024:10.1039/d4em00359d. [PMID: 39361046 PMCID: PMC11965442 DOI: 10.1039/d4em00359d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are prevalent in consumer products used indoors. However, few measurements of ionic PFAS exist for indoor air. We analyzed samples collected on PM2.5 quartz fiber filters (QFFs) in 11 North Carolina homes 1-3 times in living rooms (two QFFs in series), and immediately outside each home (single QFF), for 26 ionic PFAS as part of the 9 months Indoor PFAS Assessment (IPA) Campaign. All targeted PFAS, except for PFDS and 8:2 monoPAP, were detected indoors. PFBA, PFHpA, PFHxA, PFOA, PFOS, and 6:2 diPAP were detected in >50% of indoor samples. PFHxA, PFOA, and PFOS had the highest detection frequency (DF = 80%; medians = 0.5-0.7 pg m-3), while median PFBA concentrations (3.6 pg m-3; DF = 67%) were highest indoors. Residential indoor air concentrations (sum of measured PFAS) were, on average, 3.4 times higher than residential outdoor air concentrations, and an order of magnitude higher than regional background concentrations. Indoor-to-outdoor emission rate estimates suggest that emissions from single unit homes could be a meaningful contributor to PFBA, PFOA, and PFOS emissions in populated areas far from major point sources. Backup QFFs were observed to adsorb some targeted PFAS from the gas-phase, making reported values upper-bounds for particle-phase and lower-bounds for total air (gas plus particle) concentrations. We found that higher concentrations of carbonaceous aerosol were associated with a shift in partitioning of short chain PFCAs and long chain PFSAs toward the particle phase.
Collapse
Affiliation(s)
- Naomi Y Chang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Clara M A Eichler
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Daniel E Amparo
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jiaqi Zhou
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Picarro Inc., Santa Clara, CA, USA
| | - Elaine A Cohen Hubal
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Araki T, Oka T, Shioya N, Hasegawa T. Molecular symmetry change of perfluoro-n-alkanes in 'Phase I' monitored by infrared spectroscopy. ANAL SCI 2024; 40:1723-1731. [PMID: 38874759 PMCID: PMC11358247 DOI: 10.1007/s44211-024-00611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Phase diagram of polytetrafluoroethylene (PTFE) comprises four regions. Phases II and IV are characterized by twisted perfluoroalkyl (Rf) chains having different twisting rate of 13/6 and 15/7, respectively, while Phase III is characterized by a planer trans-zigzag molecular skeleton like a normal alkyl chain. These are confirmed by X-ray and electron diffraction and have already been established. Unlike these, Phase I is left an unresolved matter. This phase is complicated indeed and is not symbolized by a single molecular structure. At an ambient pressure, Phase I is the temperature region above 30 ºC (303 K), and the helical molecular structure is supposed to be gradually untwisted with an elevating temperature. This untwisting image is roughly suggested by the diffraction, neutron scattering, and thermal expansion techniques, but the conventional approaches have all experimental limitations because the untwisting accompanies disorder (or defect) in the twist along the chain. To explore the transition between two different helical structures of the Rf chain having disordered structures, vibrational spectroscopic techniques are expected to be an alternative approach. For infrared spectroscopy, for example, the twisting rate of the molecule is simply recognized as a degree of molecular symmetry. Here, we show that the band progression peaks of the CF2 symmetric stretching vibration mode are quite sensitive and useful for pursuing the molecular symmetry change in Phase I for both peak intensity and position using perfluoro-n-alkanes having different chain length covering both even and odd number of the CF2 groups.
Collapse
Affiliation(s)
- Taisuke Araki
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takayuki Oka
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Nobutaka Shioya
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
16
|
Barbosa GD, Tavares FW, Striolo A. Molecular Interactions of Perfluorinated and Branched Fluorine-Free Surfactants at Interfaces: Insights from a New Reliable Force Field. J Chem Theory Comput 2024. [PMID: 39140228 DOI: 10.1021/acs.jctc.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a class of synthetic compounds with exceptional interfacial properties. Their widespread use in many industrial applications and consumer products, combined with their remarkable chemical and thermal stability, has led to their ubiquitous presence in environmental matrices, including surface water and groundwater. To replace PFAS with fluorine-free surfactants, it is necessary first to develop a deep molecular-level understanding of the mechanisms responsible for the exceptional properties of PFAS. For instance, it has been shown that fluorine-free surfactants with highly branched or methylated chains can achieve low surface tensions at air-water interfaces and can provide highly hydrophobic surface coatings. Although molecular simulations combined with experiments are promising for uncovering these mechanisms, the reliability of simulation results depends strongly on the accuracy of the force fields implemented. At the moment, atomistic force fields are not available to describe PFAS in a variety of environments. Ab initio methods could help fill this knowledge gap, but they are computationally demanding. As an alternative, ab initio calculations could be used to develop accurate force fields for atomistic simulations. In this work, a new algorithm is proposed, which, built from accurate ab initio calculations, yields force fields for perfluorinated sulfonic and perfluoroalkyl acids. The accuracy of the new force field was benchmarked against solvation free energy and interfacial tension data. The new force fields were then used to probe the interfacial behavior of the PFAS surfactants. The interfacial properties observed in our simulations were compared with those manifested by two branched fluorine-free surfactants. The good agreement achieved with experiments and ab initio calculations suggests that the proposed protocol could be implemented to study other perfluorinated substances and help in the design of fluorine-free surfactants for targeted applications.
Collapse
Affiliation(s)
- Gabriel D Barbosa
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Frederico W Tavares
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Alberto Striolo
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
17
|
Cerlanek AR, Timshina AS, Robey N, Lin AM, Solo-Gabriele HM, Townsend TG, Bowden JA. Investigating the partitioning behavior of per- and polyfluoroalkyl substances (PFAS) during thermal landfill leachate evaporation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134500. [PMID: 38714054 DOI: 10.1016/j.jhazmat.2024.134500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Thermal landfill leachate evaporator systems can reduce the volume of leachate by up to 97%, while releasing water vapor and producing residuals (volume-reduced leachate and sludge) that are managed on-site. On-site thermal evaporators offer landfill operators leachate management autonomy without being subject to increasingly stringent wastewater treatment plant requirements. However, little is known about the partitioning of PFAS within these systems, nor the extent to which PFAS may be emitted into the environment via vapor. In this study, feed leachate, residual evaporated leachate, sludge, and condensed vapor were sampled at two active full-scale thermal landfill leachate evaporators and from a laboratory-scale leachate evaporation experiment. Samples were analyzed for 91 PFAS via ultra-high pressure liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Similar trends were observed from Evaporator 1, Evaporator 2, and the laboratory-scale evaporator; ∑PFAS were concentrated in the residual evaporated leachate during evaporation by a factor of 5.3 to 20. All condensed vapors sampled (n = 5) contained PFAS, predominantly 5:3 fluorotelomer carboxylic acid (5:3FTCA), (full-scale vapors 729 - 4087 ng/L PFAS; lab-scale vapor 61.0 ng/L PFAS). For Evaporators 1 and 2, an estimated 9 - 24% and 10%, respectively, of the PFAS mass entering the evaporators in leachate was released with vapor during the days of sample collection. '.
Collapse
Affiliation(s)
- Allison R Cerlanek
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - Alina S Timshina
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - Nicole Robey
- Innovative Waste Consulting Services LLC, Gainesville, FL 32606 USA
| | - Ashley M Lin
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - Helena M Solo-Gabriele
- University of Miami, Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL 33146 USA
| | - Timothy G Townsend
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - John A Bowden
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA; University of Florida, Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL 32611 USA.
| |
Collapse
|
18
|
Ahmad A, Tian K, Tanyu B, Foster GD. Sorption and diffusion of per-polyfluoroalkyl substances (PFAS) in high-density polyethylene geomembranes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:15-23. [PMID: 37995433 DOI: 10.1016/j.wasman.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The objective of this study is to investigate the fate and transport of per-polyfluoroalkyl substances (PFAS) through a high-density polyethylene (HDPE) geomembrane (GM) that is commonly used in landfill composite liner systems. Tests were conducted to measure the sorption and diffusion of per-polyfluoroalkyl substances (PFAS) with varying number of carbons in chain and functional groups on HDPE GM. Perfluoroalkyl carboxyl acids (PFCAs), perfluoroalkyl sulphonic acids (PFSAs), alkyl-sulfonamidoacetic acids (FOSAAs), fluorotelomer sulfonic acids (FtSAs), alkane sulfonamides (FOSA) and ether carboxylic acids (Gen X) were investigated in this study. The partition coefficients (Kd) on HDPE GM ranged from 3.8 to 98.3 L/kg. PFAS with amide and sulfonic functional groups showed stronger sorption than that of PFAS with carboxylic acid functional groups. Molecular weight directly affected the Kd for long-chained PFAS whereas the Kd of short-chained PFAS was not sensitive to molecular weight. The diffusion coefficients (Dg) of PFCAs and PFSAs through 0.1-mm HDPE GM were found to be in the orders of 10-18 to 10-17 m2/s. The Dg decreased with increasing molar mass and were also observed to be dependent on the functional group. Dg of PFSAs was lower than that of PFCAs for similar number of carbons in the chain. The estimated mass flux for PFAS in an intact 1.5-mm HDPE GM varied from 38.7 to 2080.8 ng/m2/year whereas the estimated diffusive breakthrough time for PFAS in intact 1.5-mm HDPE was 1526 years or longer.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Civil and Environmental Engineering, George Mason University, Fairfax, VA, 22030, USA.
| | - Kuo Tian
- Department of Civil and Environmental Engineering, George Mason University, Fairfax, VA, 22030, USA.
| | - Burak Tanyu
- Department of Civil and Environmental Engineering, George Mason University, Fairfax, VA, 22030, USA.
| | - Gregory D Foster
- Department of Chemistry & Biochemistry and Potomac Environmental Research and Education Center at PSC, George Mason University, Woodbridge, VA, 22191, USA.
| |
Collapse
|
19
|
Silva P, Silva GMC, Morgado P, Fauré MC, Goldmann M, Filipe EJM. Origin of the central pit in hemimicelles of semifluorinated alkanes: How molecular dipoles and substrate deformation can determine supra-molecular morphology. J Colloid Interface Sci 2024; 655:576-583. [PMID: 37956545 DOI: 10.1016/j.jcis.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
HYPOTHESIS Semifluorinated alkanes amphiphiles spontaneously form highly monodispersed hemimicelles at the surface of water. The origin of the formation and complex structure of these surprising supramolecular aggregates were only recently clarified using molecular dynamics simulations (MD). The existence of a pit at the center of these aggregates made up of almost 3000 molecules was indeed reproduced by the MD simulations, but not understood. METHOD A careful strategy of atomistic MD simulations comparing non-electrostatic force fields with force fields that include electrostatic forces, thus bearing an implicit or explicit dipole, allowed demonstrating the roles of dipolar interactions and interactions with the liquid subphase on the morphology of the aggregates. FINDINGS The simulation results clearly show that within the hemimicelles the strong molecular dipoles located at the CH2-CF2 junctions tend to align, leading to a collective shift of the PFAA molecules relatively to each other. This shift is responsible for the curvature of the hemimicelles and originates the central pit, provided the possibility of deforming the surface of the water sub-phase. Comparisons with non-electrostatic force field results further contribute to understand the origin of the self-assembling process. The results directly connect for the first time a molecular property with a mesoscopic structural feature. Given the molecular simplicity of these "primitive" amphiphiles compared to the common hydrophilic/hydrophobic surfactants, the results contribute to understand self-assembly in general.
Collapse
Affiliation(s)
- Pedro Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Sorbonne Université, Institut des NanoSciences de Paris, CNRS-UMR 7588, 4 place Jussieu, 75005 Paris, France
| | - Gonçalo M C Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Pedro Morgado
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marie-Claude Fauré
- Sorbonne Université, Institut des NanoSciences de Paris, CNRS-UMR 7588, 4 place Jussieu, 75005 Paris, France; Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 45 Rue de Saints-Pères, 75006 Paris, France
| | - Michel Goldmann
- Sorbonne Université, Institut des NanoSciences de Paris, CNRS-UMR 7588, 4 place Jussieu, 75005 Paris, France; Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 45 Rue de Saints-Pères, 75006 Paris, France; Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-Sur-Yvette, France
| | - Eduardo J M Filipe
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
20
|
Leung SCE, Wanninayake D, Chen D, Nguyen NT, Li Q. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS) - Challenges and opportunities in sensing and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166764. [PMID: 37660805 DOI: 10.1016/j.scitotenv.2023.166764] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a class of persistent organic pollutants that presents health and environmental risks. PFAS are ubiquitously present in the environment, but current remediation technologies are ineffective in degrading them into innocuous chemicals, especially high energy degradation processes often generate toxic short chain intermediates. Therefore, the best remediation strategy is to first detect the source of pollution, followed by capturing and mineralising or recycling of the compounds. The main objective of this article is to summarise the unique physicochemical properties and to critically review the intermolecular and intramolecular physicochemical interactions of PFAS, and how these interactions can become obstacles; and at the same time, how they can be applied to the PFAS sensing, capturing, and recycling process. The physicochemical interactions of PFAS chemicals are being reviewed in this paper includes, (1) fluorophilic interactions, (2) hydrophobic interactions, (3) electrostatic interactions and cation bridging, (4) ionic exchange and (5) hydrogen bond. Moreover, all the different influential factors to these interactions have also been reported. Finally, properties of these interactions are compared against one another, and the recommendations for future designs of affinity materials for PFAS have been given.
Collapse
Affiliation(s)
- Shui Cheung Edgar Leung
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dushanthi Wanninayake
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
21
|
Dou J, Liu J, Wang Y, Zhi L, Shen J, Wang G. Surface Activity, Wetting, and Aggregation of a Perfluoropolyether Quaternary Ammonium Salt Surfactant with a Hydroxyethyl Group. Molecules 2023; 28:7151. [PMID: 37894630 PMCID: PMC10608880 DOI: 10.3390/molecules28207151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
This paper reports the synthesis of a novel quaternary surfactant containing a hydroxyethyl group (PFPE-C) and the surface properties of its aqueous solution (investigated by comparisons with two structurally similar chemicals, dodecyl-(2-hydroxyethyl)-dimethylammonium chloride (DHDAC) and PFPE-A). The minimum surface tension (γCMC) and critical micelle concentration (CMC) of the PFPE-C aqueous solution were 17.35 mN/m and 0.024 mmol/L, respectively. This study confirms that surfactants containing hydroxyethyl groups efficiently reduce the surface tension of aqueous solutions, and fluorocarbon surfactants exhibit better surface activity than ordinary hydrocarbon surfactants with similar structures. The micellization, aggregation, air-water interfacial adsorption, and wettability of PFPE-C aqueous solutions have been systematically investigated. Highly concentrated PFPE-C aqueous solutions exhibit good wettability on PTFE and paraffin films. Moreover, the aggregates of PFPE-C in the aqueous solution were clearly seen as vesicles on Cryo-TEM micrographs. Primary biodegradation results indicate that 19% of PFPC-C can be degraded within one week.
Collapse
Affiliation(s)
- Jiangxun Dou
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (J.D.); (J.L.); (L.Z.)
| | - Jiaoyan Liu
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (J.D.); (J.L.); (L.Z.)
| | - Yan Wang
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (J.D.); (J.L.); (L.Z.)
| | - Lifei Zhi
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (J.D.); (J.L.); (L.Z.)
| | - Jixian Shen
- China Research Institute of Daily Chemical Industry, Taiyuan 030001, China;
| | - Guoyong Wang
- School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; (J.D.); (J.L.); (L.Z.)
| |
Collapse
|
22
|
Sim KH, Oh HS, Lee C, Eun H, Lee YJ. Evaluation of the Effect of Perfluorohexane Sulfonate on the Proliferation of Human Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6868. [PMID: 37835138 PMCID: PMC10572997 DOI: 10.3390/ijerph20196868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Perfluorohexane sulfonate (PFHxS) is a widely detected replacement for legacy long-chain perfluoroalkyl substances (PFAS) in the environment and human blood samples. Its potential toxicity led to its recent classification as a globally regulated persistent organic pollutant. Although animal studies have shown a positive association between PFHxS levels and hepatic steatosis and hepatocellular hypertrophy, the link with liver toxicity, including end-stage liver cancer, remains inconclusive. In this study, we examined the effects of PFHxS on the proliferation of Hep3B (human hepatocellular carcinoma) and SK-Hep1 (human liver sinusoidal endothelial cells). Cells were exposed to different PFHxS concentrations for 24-48 h to assess viability and 12-14 days to measure colony formation. The viability of both cell lines increased at PFHxS concentrations <200 μM, decreased at >400 μM, and was highest at 50 μM. Colony formation increased at <300 μM and decreased at 500 μM PFHxS. Consistent with the effect on cell proliferation, PFHxS increased the expression of proliferating cell nuclear antigen (PCNA) and cell-cycle molecules (CDK2, CDK4, cyclin E, and cyclin D1). In summary, PFHxS exhibited a biphasic effect on liver cell proliferation, promoting survival and proliferation at lower concentrations and being cytotoxic at higher concentrations. This suggests that PFHxS, especially at lower concentrations, might be associated with HCC development and progression.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Hyeon Seo Oh
- Department of Neurology, Daegu Catholic University Medical Center, Daegu 42472, Republic of Korea;
| | - Chuhee Lee
- Department of Biochemistry & Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea;
| | - Heesoo Eun
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
23
|
Fleetwood SK, Bell S, Jetter R, Foster EJ. Plant-based, aqueous, water-repellent sprays for coating textiles. SOFT MATTER 2023; 19:7020-7032. [PMID: 37676239 DOI: 10.1039/d3sm00720k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Novel superhydrophobic coatings, that are both biodegradable and biosourced, have the potential to revolutionize the water-repellent coating industry. Here, water-repellent coatings were prepared from commercially unavailable plant waxes, isolated using solvent extraction and characterized using DSC, GC-MS and DLS. In the first stage, a plant survey was conducted to identify an ideal plant source for the final spray, in which Whatman filter paper was submerged in a wax-solvent solution with recrystallization occurring upon air-drying. In the second stage, aqueous, PFC-free wax dispersions were prepared, coated onto textiles (cotton and polyester), and heat-treated with a home drying machine to allow for the spreading and recrystallization of the waxes. In both stages, SEM visualization verified the coating's morphology, and contact angle measurements showed them to be superhydrophobic. It was concluded that, using less coating material than commercial coatings, high-performing petroleum-free coatings could be made and applied onto textiles of various polarities.
Collapse
Affiliation(s)
- Sara K Fleetwood
- Department of Chemical and Biological Engineering 421, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Sydney Bell
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - E Johan Foster
- Department of Chemical and Biological Engineering 421, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
24
|
Krafft MP, Riess JG. About Perfluoropolyhedranes, Their Electron-Accepting Ability and Questionable Supramolecular Hosting Capacity. Angew Chem Int Ed Engl 2023; 62:e202302942. [PMID: 37208990 DOI: 10.1002/anie.202302942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Polyhedral molecules are appealing for their eye-catching architecture and distinctive chemistry. Perfluorination of such, often greatly strained, compounds is a momentous challenge. It drastically changes the electron distribution, structure and properties. Notably, small high-symmetry perfluoropolyhedranes feature a centrally located, star-shaped low-energy unoccupied molecular orbital that can host an extra electron within the polyhedral frame, thus producing a radical anion, without loss of symmetry. This predicted electron-hosting capacity was definitively established for perfluorocubane, the first perfluorinated Platonic polyhedrane to be isolated pure. Hosting atoms, molecules, or ions in such "cage" structures is, however, all but forthright, if not illusionary, offering no easy access to supramolecular constructs. While adamantane and cubane have fostered numerous applications in materials science, medicine, and biology, specific uses for their perfluorinated counterparts remain to be established. Some aspects of highly fluorinated carbon allotropes, such as fullerenes and graphite, are briefly mentioned for context.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess., 67034, Strasbourg Cedex, France
| | - Jean G Riess
- Harangoutte Institute, 68160, Ste-Croix-aux-Mines, France
| |
Collapse
|
25
|
Vo PH, Key TA, Le TH, McDonough JT, Porman S, Fiorenza S, Nguyen HT, Dao VT, Mueller JF, Thai PK. Evaluation of sealants to mitigate the release of per- and polyfluoroalkyl substances (PFAS) from AFFF-impacted concrete: Characterization and forecasting. WATER RESEARCH X 2023; 20:100195. [PMID: 37637861 PMCID: PMC10448196 DOI: 10.1016/j.wroa.2023.100195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) within concrete pads impacted by historical firefighting training using aqueous film-forming foam (AFFF) may be potential secondary sources of PFAS due to surficial leaching. This study aimed to (i) characterize the effectiveness of two commercially available sealants (Product A and Product B) in mitigating leaching of five PFAS (e.g., PFOS, PFOA, PFHxS, PFHxA, 6:2 FTS) from concrete surfaces at the laboratory-scale, and (ii) develop a model to forecast cumulative leaching of the same five PFAS over 20 years from sealed and unsealed concrete surfaces. Laboratory trials demonstrated that both sealants reduced the surficial leaching of the five PFAS studied, and Product B demonstrated a comparatively greater reduction in surface leaching than Product A as measured against unsealed controls. The cumulative PFOS leaching from an unsealed concrete surface is estimated by the model to be about 400 mg/m2 over 20 years and reached asymptotic conditions after 15 years. In contrast, the model output suggests asymptotic conditions were not achieved within the modeled time of 20 years after sealing with Product A and 85% of PFOS was predicted to have leached (∼340 mg/m2). Negligible leaching of PFOS after sealing with Product B was observed ( < 5 × 10-9 mg/m2). Results from modeled rainfall scenarios suggest PFAS leachability is reduced from sealed versus unsealed AFFF-impacted concrete surfaces.
Collapse
Affiliation(s)
- Phong H.N. Vo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland, 4102, Australia
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Trent A. Key
- ExxonMobil Environmental and Property Solutions Company, Spring, TX 77389, USA
- ExxonMobil Biomedical Sciences Inc., Spring, TX 77389, USA
| | - Tu Hoang Le
- Nong Lam University Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | | | - Scott Porman
- Mobil Oil Australia, Melbourne, VIC 3008, Australia
| | | | - Hong T.M. Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland, 4102, Australia
| | - Vinh T.N. Dao
- School of Civil Engineering, The University of Queensland, Queensland, 4102, Australia
| | - Jochen F. Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland, 4102, Australia
| | - Phong K. Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland, 4102, Australia
| |
Collapse
|
26
|
Hakimabadi SG, Taylor A, Pham ALT. Factors Affecting the Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Colloidal Activated Carbon. WATER RESEARCH 2023; 242:120212. [PMID: 37336180 DOI: 10.1016/j.watres.2023.120212] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
The immobilization of per- and polyfluoroalkyl substances (PFAS) by colloidal activated carbon (CAC) barriers has been proposed as a potential in-situ method to mitigate the transport of plumes of PFAS in the subsurface. However, if PFAS are continuously released from a source zone, the adsorptive sites on CAC will eventually become saturated, upon which point the breakthrough of PFAS in the barrier will occur. To predict the long-term effectiveness of CAC barriers, it is important to evaluate the factors that may affect the adsorption of PFAS on CAC. In this study, the adsorption of 7 PFAS on a polymer-stabilized CAC (i.e., PlumeStop®) and on a polymer-free CAC was investigated using batch experiments. The adsorption affinity of PFAS to CAC was in the following order: PFOS > 6:2 FTS > PFHxS > PFOA > PFBS > PFPeA > PFBA. This result indicates that hydrophobic interaction was the predominant adsorption mechanism, and that hydrophilic compounds such as PFBA and PFPeA will break through CAC barriers first. The partition coefficient Kd for the adsorption of PFAS on the polymer-stabilized CAC was 1.3 - 3.5 times smaller than the Kd for the adsorption of PFAS on the polymer-free CAC, suggesting that the polymers decreased the adsorption, presumably due to competitive sorption. Thus, the PFAS adsorption capacity of PlumeStop CAC barriers is expected to increase once the polymers are biodegraded and/or washed away. The affinity of PFOS and PFOA to CAC increased when the ionic strength of the solution increased from 1 to 100 mM, or when the concentration of Ca2+ increased from 0 to 2 mM. In contrast, less PFOS and PFOA were adsorbed in the presence of 1 - 20 mgC/L Suwannee River Fulvic Acid, which represented dissolved organic carbon, or in the presence of 10 - 100 mg/L diethylene glycol butyl ether (DGBE), which is an important component in some aqueous film-forming foam (AFFF) formulations. The presence of 0.5 - 4.8 mg/L benzene or 0.5 - 8 mg/L trichloroethylene, the co-contaminants that may comingle with PFAS at AFFF-impacted sites, diminished PFOS adsorption but had no effect or even slightly enhanced PFOA adsorption. When the initial concentration of TCE was 8 mg/L, the Kd (514 ± 240 L/g) for the adsorption of PFOS was approximately 20 times lower than that in the TCE-free system (Kd = 9,579 ± 829 L/g). The results of this study provided insights into some key factors that may affect the adsorption of PFAS in in-situ CAC barriers.
Collapse
Affiliation(s)
| | - Alannah Taylor
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
27
|
Sumino Y, Yamashita R, Miyaji K, Ishikawa H, Otani M, Yamamoto D, Okita E, Okamoto Y, Krafft MP, Yoshikawa K, Shioi A. Droplet duos on water display pairing, autonomous motion, and periodic eruption. Sci Rep 2023; 13:12377. [PMID: 37524759 PMCID: PMC10390526 DOI: 10.1038/s41598-023-39094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Under non-equilibrium conditions, liquid droplets dynamically couple with their milieu through the continuous flux of matter and energy, forming active systems capable of self-organizing functions reminiscent of those of living organisms. Among the various dynamic behaviors demonstrated by cells, the pairing of heterogeneous cell units is necessary to enable collective activity and cell fusion (to reprogram somatic cells). Furthermore, the cyclic occurrence of eruptive events such as necroptosis or explosive cell lysis is necessary to maintain cell functions. However, unlike the self-propulsion behavior of cells, cyclic cellular behavior involving pairing and eruption has not been successfully modeled using artificial systems. Here, we show that a simple droplet system based on quasi-immiscible hydrophobic oils (perfluorodecalin and decane) deposited on water, mimics such complex cellular dynamics. Perfluorodecalin and decane droplet duos form autonomously moving Janus or coaxial structures, depending on their volumes. Notably, the system with a coaxial structure demonstrates cyclic behavior, alternating between autonomous motion and eruption. Despite their complexity, the dynamic behaviors of the system are consistently explained in terms of the spreading properties of perfluorodecalin/decane duplex interfacial films.
Collapse
Affiliation(s)
- Yutaka Sumino
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Ryo Yamashita
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Kazuki Miyaji
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Hiroaki Ishikawa
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Maho Otani
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Daigo Yamamoto
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Erika Okita
- Department of Chemical Engineering, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yasunao Okamoto
- Research Center for Membrane and Film Technology, Kobe University, Kobe, 657-8501, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034, Strasbourg, France.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
| |
Collapse
|
28
|
Shalabi K, Abd El-Lateef HM, Hammouda MM, Osman AMA, Tantawy AH, Abo-Riya MA. Perspectives on Corrosion Inhibition Features of Novel Synthesized Gemini-Fluorinated Cationic Surfactants Bearing Varied Spacers for Acid Pickling of X60-Steel: Practical, and In Silico Calculations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5192. [PMID: 37512467 PMCID: PMC10383753 DOI: 10.3390/ma16145192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Through our present study, three novel Gemini-fluorinated cationic surfactants bearing different spacers (FSG6-2, FSG6-4, and FSG6-6) were synthesized, and their structures were explained via different spectroscopic instruments such as 1H, 13C, and 19F NMR spectra. The surface activity of the as-prepared surfactants was examined. The inhibiting influence of FSG6 molecules on the X60 steel corrosion in the pickling solution (HCl) was examined by diverse methods comprising electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and X-ray photoelectron spectroscopy (XPS) experimentations, and computational calculations. The inhibition effectiveness of FSG6 surfactants followed the order of 93.37% (FSG6-2) < 96.74% (FSG6-4) < 98.37% (FSG6-6) at 2.0 × 10-4 M. The FSG6 surfactants function as mixed-type inhibitors, according to PDP investigations. The H2O molecules that adsorbed on the steel interface were substituted with surfactant molecules, and the surfactant's inhibitory activity is likely caused by the improvement in an adsorptive layer on the steel substrate, as specified by the EIS results. The Langmuir isotherm describes the absorption of FSG6 molecules on the metal surface. The XPS investigations validate the steel interface's extremely protective nature. The mechanism of interaction between FSG6 molecules with an X60-steel employing the DFT calculations and MC simulations methods was also examined and discussed.
Collapse
Affiliation(s)
- Kamal Shalabi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amany M A Osman
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam 32511, Egypt
| | - Ahmed H Tantawy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Mohamed A Abo-Riya
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
29
|
Hodges S, Wahman DG, Haupert LM, Pham HT, Bozarth MK, Howland MB, Fairey JL. Non-Steady-State Fickian Diffusion Models Decrease the Estimated Gel Layer Diffusion Coefficient Uncertainty for Diffusive Gradients in Thin-Films Passive Samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9793-9801. [PMID: 37342010 PMCID: PMC10324599 DOI: 10.1021/acs.est.3c01861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Mass transport in diffusive gradients in thin-film passive samplers is restricted to diffusion through a gel layer of agarose or agarose cross-linked polyacrylamide (APA). The gel layer diffusion coefficient, DGel, is typically determined using a standard analysis (SA) based on Fick's first law from two-compartment diffusion cell (D-Cell) tests. The SA assumes pseudo-steady-state flux, characterized by linear sink mass accumulation-time profiles with a typical threshold R2 ≥ 0.97. In 72 D-Cell tests with nitrate, 63 met this threshold, but the SA-determined DGel ranged from 10.1 to 15.8 × 10-6 cm2·s-1 (agarose) and 9.5 to 14.7 × 10-6 cm2·s-1 (APA). A regression model developed with the SA to account for the diffusive boundary layer had 95% confidence intervals (CIs) on DGel of 13 to 18 × 10-6 cm2·s-1 (agarose) and 12 to 19 × 10-6 cm2·s-1 (APA) at 500 rpm. A finite difference model (FDM) developed based on Fick's second law with non-steady-state (N-SS) flux decreased uncertainty in DGel tenfold. The FDM-captured decreasing source compartment concentrations and N-SS flux in the D-Cell tests and, at 500 rpm, the FDM-determined DGel ± 95% CIs were 14.5 ± 0.2 × 10-6 cm2·s-1 (agarose) and 14.0 ± 0.3 × 10-6 cm2·s-1 (APA), respectively.
Collapse
Affiliation(s)
- Samuel
D. Hodges
- Department
of Civil Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - David G. Wahman
- U.S.
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Levi M. Haupert
- U.S.
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Huong T. Pham
- Department
of Civil Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Margaret K. Bozarth
- Department
of Civil Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Michael B. Howland
- Department
of Civil Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julian L. Fairey
- Department
of Civil Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
30
|
Chen L, Chen D, Zhou S, Lin J, Liu Y, Huang X, Lin Q, Morel JL, Ni Z, Wang S, Qiu R. New Insights into the Accumulation, Transport, and Distribution Mechanisms of Hexafluoropropylene Oxide Homologues, Important Alternatives to Perfluorooctanoic Acid, in Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9702-9712. [PMID: 37314230 DOI: 10.1021/acs.est.2c09226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hexafluoropropylene oxide (HFPO) homologues, which are important alternatives to perfluorooctanoic acid, have been frequently identified in crops. Although exposure to HFPO homologues via crops may pose non-negligible threats to humans, their impact on crops is still unknown. In this study, the accumulation, transport, and distribution mechanisms of three HFPO homologues in lettuce were investigated at the plant, tissue, and cell levels. More specifically, HFPO trimer acid and HFPO tetramer acid were primarily fixed in roots and hardly transported to shoots (TF, 0.06-0.63). Conversely, HFPO dimer acid (HFPO-DA) tended to accumulate in lettuce shoots 2-264 times more than the other two homologues, thus resulting in higher estimated daily intake values. Furthermore, the dissolved organic matter derived from root exudate enhanced HFPO-DA uptake by increasing its desorption fractions in the rhizosphere. The transmembrane uptake of HFPO homologues was controlled by means of a transporter-mediated active process involving anion channels, with the uptake of HFPO-DA being additionally facilitated by aquaporins. The higher accumulation of HFPO-DA in shoots was attributed to the larger proportions of HFPO-DA in the soluble fraction (55-74%) and its higher abundance in both vascular tissues and xylem sap. Our findings expand the understanding of the fate of HFPO homologues in soil-crop systems and reveal the underlying mechanisms of the potential exposure risk to HFPO-DA.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shunyi Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jieying Lin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yun Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jean Louis Morel
- Laboratoire Sol et Environnement Université de Lorraine-INRAE, Vandoeuvre-lès-Nancy 54500, France
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
31
|
Huang J, Fu Z, Sun CF, Deng W. Surfactant Additives Containing Hydrophobic Fluorocarbon Chains and Hydrophilic Sulfonate Anion for Highly Reversible Zn Anode. Molecules 2023; 28:molecules28104177. [PMID: 37241917 DOI: 10.3390/molecules28104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Aqueous zinc-ion batteries (AZIBs) show enormous potential as a large-scale energy storage technique. However, the growth of Zn dendrites and serious side reactions occurring at the Zn anode hinder the practical application of AZIBs. For the first time, we reported a fluorine-containing surfactant, i.e., potassium perfluoro-1-butanesulfonate (PPFBS), as an additive to the 2 M ZnSO4 electrolyte. Benefitting from its hydrophilic sulfonate anion and hydrophobic long fluorocarbon chain, PPFBS can promote the uniform distribution of Zn2+ flux at the anode/electrolyte interface, allowing the Zn/Zn cell to cycle for 2200 h. Furthermore, PPFBS could inhibit side reactions due to the existence of the perfluorobutyl sulfonate (C4F9SO3-) adsorption layer and the presence of C4F9SO3- in the solvation structure of Zn2+. The former can reduce the amount of H2O molecules and SO42- in contact with the Zn anode and C4F9SO3- entering the Zn2+-solvation structure by replacing SO42-. The Zn/Cu cell exhibits a superior average CE of 99.47% over 500 cycles. When coupled with the V2O5 cathode, the full cell shows impressive cycle stability. This work provides a simple, effective, and economical solution to the common issues of the Zn anode.
Collapse
Affiliation(s)
- Jinxian Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhao Fu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chuan-Fu Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Wenzhuo Deng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
32
|
Yan B, Liu J. Molecular framework for designing Fluoroclay with enhanced affinity for per- and polyfluoroalkyl substances. WATER RESEARCH X 2023; 19:100175. [PMID: 36950253 PMCID: PMC10026042 DOI: 10.1016/j.wroa.2023.100175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Motivated by the need for enhancing sorbent affinity for per- and polyfluoroalkyl substances (PFAS), we demonstrate the possibility of rationally designing clay-based material (FluoroClay) with a pre-selected intercalant and predicting sorbent performance using all-atom molecular dynamics simulation coupled with density functional theory-based computation. Perfluorohexyldodecane quaternary ammonium (F6H12A) as the selected intercalant revealed significant enhancement in adsorption affinity for hard-to-remove compounds, including perfluorobutane sulfonate (PFBS) and polyfluoroalkylethers (GenX and ADONA). The adsorption is thermodynamically entropy-driven and dominated by the hydrophobic effect. The incorporation of fluorine atoms into clay intercalants gave rise to a hydrophobic and fluorophilic "cavity" structure for targeted PFAS. The self-assembly of intercalant-PFAS under the negative electric field of clay sheets created a unique configuration that significantly enlarged the contact surface area between PFAS and F6H12A and was quantitatively driven by their intermolecular interactions, e.g., CF chain-CH chain, CF chain-CF chain, and charge-CH chain interactions. Collectively, our work demonstrated a new approach to select fluorinated functionality for designing a new adsorbent and estimating its performance via molecular simulation. It also provided an in-depth understanding of the underlying fundamental physics and chemistry in the adsorption of PFAS, suggesting a new strategy for PFAS removal, particularly for short-chain PFAS and new chemical alternatives.
Collapse
Affiliation(s)
- Bei Yan
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
33
|
Wu S, Zhu L, Ye Q, Zhu Y, Zhang T, Chen X, Zhong W. Mechanisms for the structural dependent transformation of 6:2 and 8:2 polyfluoroalkyl phosphate diesters in wheat (Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131536. [PMID: 37146340 DOI: 10.1016/j.jhazmat.2023.131536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are widely used and detected in various environmental media and organisms, but little is known about their behaviors in plants. In this study, the uptake, translocation and transformation of 6:2 and 8:2 diPAP in wheat using hydroponic experiments were investigated. 6:2 diPAP was more easily taken up by roots and translocated to shoots than 8:2 diPAP. Their phase I metabolites were fluorotelomer saturated carboxylates (FTCAs), fluorotelomer unsaturated carboxylates (FTUCAs) and perfluoroalkyl carboxylic acids (PFCAs). PFCAs with even-numbered chain length were the primary phase I terminal metabolites suggesting that they were mainly generated through β-oxidation. Cysteine and sulfate conjugates were the primary phase II transformation metabolites. The higher levels and ratios of phase II metabolites in the 6:2 diPAP exposure group indicated that the phase I metabolites of 6:2 diPAP were more susceptible to phase II transformation than that of 8:2 diPAP, which was confirmed by density functional theory calculation. Enzyme activity analyses and in vitro experiments demonstrated that cytochrome P450 and alcohol dehydrogenase actively participated in the phase Ⅰ transformation of diPAPs. Gene expression analyses showed that glutathione S-transferase (GST) was involved in the phase Ⅱ transformation, and the subfamily GSTU2 played a dominant role.
Collapse
Affiliation(s)
- Sihan Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qingqing Ye
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
34
|
Tsagogiorgas C, Otto M. Semifluorinated Alkanes as New Drug Carriers-An Overview of Potential Medical and Clinical Applications. Pharmaceutics 2023; 15:pharmaceutics15041211. [PMID: 37111696 PMCID: PMC10146824 DOI: 10.3390/pharmaceutics15041211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fluorinated compounds have been used in clinical and biomedical applications for years. The newer class of semifluorinated alkanes (SFAs) has very interesting physicochemical properties including high gas solubility (e.g., for oxygen) and low surface tensions, such as the well-known perfluorocarbons (PFC). Due to their high propensity to assemble to interfaces, they can be used to formulate a variety of multiphase colloidal systems, including direct and reverse fluorocarbon emulsions, microbubbles and nanoemulsions, gels, dispersions, suspensions and aerosols. In addition, SFAs can dissolve lipophilic drugs and thus be used as new drug carriers or in new formulations. In vitreoretinal surgery and as eye drops, SFAs have become part of daily clinical practice. This review provides brief background information on the fluorinated compounds used in medicine and discusses the physicochemical properties and biocompatibility of SFAs. The clinically established use in vitreoretinal surgery and new developments in drug delivery as eye drops are described. The potential clinical applications for oxygen transport by SFAs as pure fluids into the lungs or as intravenous applications of SFA emulsions are presented. Finally, aspects of drug delivery with SFAs as topical, oral, intravenous (systemic) and pulmonary applications as well as protein delivery are covered. This manuscript provides an overview of the (potential) medical applications of semifluorinated alkanes. The databases of PubMed and Medline were searched until January 2023.
Collapse
Affiliation(s)
- Charalambos Tsagogiorgas
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Anaesthesiology and Critical Care Medicine, St. Elisabethen-Krankenhaus, Teaching Hospital of the University of Frankfurt, 60487 Frankfurt, Germany
| | - Matthias Otto
- Department of Anaesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
35
|
Wanzek T, Stults JF, Johnson MG, Field JA, Kleber M. Role of Mineral-Organic Interactions in PFAS Retention by AFFF-Impacted Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5231-5242. [PMID: 36947878 PMCID: PMC10764056 DOI: 10.1021/acs.est.2c08806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A comprehensive, generalized approach to predict the retention of per- and polyfluoroalkyl substances (PFAS) from aqueous film-forming foam (AFFF) by a soil matrix as a function of PFAS molecular and soil physiochemical properties was developed. An AFFF with 34 major PFAS (12 anions and 22 zwitterions) was added to uncontaminated soil in one-dimensional saturated column experiments and PFAS mass retained was measured. PFAS mass retention was described using an exhaustive statistical approach to generate a poly-parameter quantitative structure-property relationship (ppQSPR). The relevant predictive properties were PFAS molar mass, mass fluorine, number of nitrogens in the PFAS molecule, poorly crystalline Fe oxides, organic carbon, and specific (BET-N2) surface area. The retention of anionic PFAS was nearly independent of soil properties and largely a function of molecular hydrophobicity, with the size of the fluorinated side chain as the main predictor. Retention of nitrogen-containing zwitterionic PFAS was related to poorly crystalline metal oxides and organic carbon content. Knowledge of the extent to which a suite of PFAS may respond to variations in soil matrix properties, as developed here, paves the way for the development of reactive transport algorithms with the ability to capture PFAS dynamics in source zones over extended time frames.
Collapse
Affiliation(s)
- Thomas Wanzek
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - John F. Stults
- Department Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Mark G. Johnson
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, Oregon 97333, United States
| | - Jennifer A. Field
- Department Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Markus Kleber
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
36
|
Yamazaki E, Eun H, Taniyasu S, Sakamoto T, Hanari N, Inui H, Wu R, Lin H, Lam PKS, Falandysz J, Yamashita N. Residue Distribution and Daily Exposure of Per- and Polyfluoroalkyl Substances in Indica and Japonica Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4208-4218. [PMID: 36848881 DOI: 10.1021/acs.est.2c08767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have excellent chemical stability but have adverse environmental impacts of concern. Furthermore, bioaccumulation of PFAS in rice varieties─which is the essential staple food crop in Asia─has not been verified. Therefore, we cultivated Indica (Kasalath) and Japonica rice (Koshihikari) in the same Andosol (volcanic ash soil) paddy field and analyzed the air, rainwater, irrigated water, soil, and rice plants for 32 PFAS residues, throughout the cultivation to human consumption. During the rice cultivation period, the cultivation environment in atmospheric particulate matter (PM) constituted perfluoroalkyl carboxylic acids (PFCAs), with minimal perfluorinated sulfonic acids (PFSAs). Furthermore, perfluorooctanesulfonic acid (PFOS) migrates at a PM > 10 to drop in a cultivation field and was conducive to leakage and accumulation of PFCAs in air particles in the field environment. Moreover, precipitation was a sources of irrigation water contamination, and cultivated soil with a high carbon content could capture PFSAs and PFCAs (over C10). There were no major differences in residual PFAS trends in the rice varieties, but the distribution of PFAS in the growing soil, air, and rainwater differed. The edible white rice part was mainly affected by irrigation water in both varieties. Monte Carlo simulations of daily exposure assessments of PFOS, PFOA, and perfluorononanic acid showed similar results for Indians consuming Indica rice and Japanese consuming Japonica rice. The results indicate that the ultratrace PFAS residue concentrations and their daily exposure were not cultivar-specific.
Collapse
Affiliation(s)
- Eriko Yamazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Heesoo Eun
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Toshihiro Sakamoto
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Nobuyasu Hanari
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Hideyuki Inui
- Response to Environmental Materials, Division of Signal Responses, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Lodz, Poland
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
37
|
Sheng Y, Zhang H, Song X, Wang Z, Wang X, Li Y. Comparative study on foaming and foam stability of multiple mixed systems of fluorocarbon, hydrocarbon, and amino acid surfactants. J SURFACTANTS DETERG 2023. [DOI: 10.1002/jsde.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Youjie Sheng
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Hanling Zhang
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | | | - Zhenping Wang
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Xu Wang
- Yankuang Energy Mine Rescue Brigade Jining China
| | - Yang Li
- College of Safety Science and Engineering Xi'an University of Science and Technology Xi'an China
| |
Collapse
|
38
|
Xia Y, Hao L, Li Y, Li Y, Chen J, Li L, Han X, Liu Y, Wang X, Li D. Embryonic 6:2 FTOH exposure causes reproductive toxicity by disrupting the formation of the blood-testis barrier in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114497. [PMID: 36608565 DOI: 10.1016/j.ecoenv.2023.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have revealed nephrotoxicity, hepatotoxicity, subchronic developmental and reproductive toxicity in rats exposed to fluorotelomer alcohol (FTOH). However, the effects of embryonic 6:2 FTOH exposure on the reproductive system of offspring mice remain unclear. The purpose of this study is to explore the reproductive toxic effects of embryonic 6:2 FTOH exposure on offspring male mice and the related molecular mechanisms. Therefore, the pregnant mice were given corn oil or 6:2 FTOH by gavage from gestational days 12.5-21.5. The results demonstrated that embryonic 6:2 FTOH exposure resulted in disrupted testicular structure, low expression of tight junction protein between Sertoli cells (SCs), impaired blood-testis barrier (BTB) formation and maturation, reduced sperm viability and increased malformation, and induced testicular inflammation in the offspring of mice. Further in vitro studies showed that 6:2 FTOH treatment upregulated MMP-8 expression by activating AKT/NF-κB signaling pathway, which in turn enhanced occludin cleavage leading to the disruption of SCs barrier integrity. In summary, this study demonstrated that 6:2 FTOH exposure caused reproductive dysfunction in male offspring through disruption of BTB, which provided new insights into the effects of 6:2 FTOH exposure on the offspring.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Yueyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Li
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanmei Liu
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
39
|
Hu W, Zhang MY, Liu LY, Zhang ZF, Guo Y. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) crossing the blood-cerebrospinal fluid barrier: Their occurrence in human cerebrospinal fluid. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130003. [PMID: 36179624 DOI: 10.1016/j.jhazmat.2022.130003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Data remain scarce regarding the occurrence of per- and polyfluoroalkyl substances (PFASs) in the human brain for better understanding the cerebral disorders. In this study, we measured the concentrations and profiles of 26 traditional and emerging PFASs in cerebrospinal fluid (CSF), which is a preferred matrix to monitor pollutants in the human brain. Our results indicated perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS) and n-methylperfluorooctanesulfonamidoacetic acid were the most frequently detected congeners (detection frequency >90%). As the predominant congeners, PFOA and PFOS contributed 27.7% and 14.5% of the total amount of PFASs (ΣPFASs), with respective mean concentration of 221 and 115 pg mL-1. In addition, the concentrations of ΣPFASs in CSF of males were generally higher than those of females, which may be related to the different half-lives of PFASs in different sexes. Interestingly, the concentrations of ΣPFASs and several individual congeners (e.g., perfluorohexanoic acid, perfluorodecanoic acid, perfluorononanoic acid, PFHxS and PFOS) increased with age. The highest concentration of ΣPFASs was found in the elderly compared with other age groups, which may be due to the decreased CSF output as age increased. Our data are valuable for further studies regarding the toxic effects of PFASs on the human brain.
Collapse
Affiliation(s)
- Wei Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511436, China
| | - Ming-Yan Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Liang-Ying Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511436, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ying Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
40
|
Khan MY, Song J, Narimani M, da Silva G. Thermal decomposition mechanism and kinetics of perfluorooctanoic acid (PFOA) and other perfluorinated carboxylic acids: a theoretical study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2475-2487. [PMID: 36468420 DOI: 10.1039/d2em00259k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perfluorinated carboxylic acids (PFCAs), particularly perfluorooctanoic acid (PFOA), are broadly used for chemical synthesis and as surfactants, but they pose a serious threat to humans and wildlife because of toxicity concerns, environmental stability, and tendency to bioaccumulate. PFCA waste is commercially treated in incinerators, however, their exact degradation mechanisms are still unknown. In the present work, we report the decomposition mechanism and kinetics of straight-chain PFCAs using quantum chemistry and reaction rate theory calculations. Degradation mechanisms and associated kinetic parameters are determined for the complete series of straight-chain PFCAs from perfluorononanoic acid (C8F17COOH, C9) to fluoroformic acid (FCOOH, C1). Our results show that PFCA decomposition follows an analogous mechanism to perfluorinated sulfonic acids, where HF elimination from the acid head group produces a three membered ring intermediate, in this case a perfluorinated α-lactone. These perfluorinated α-lactones are short-lived intermediates that readily degrade into perfluorinated acyl fluorides and CO, thus shortening the perfluorinated chain by one C atom. Because perfluorinated acyl fluorides are known to hydrolyse to PFCAs, repeated cycles of carboxylic acid decomposition followed by acyl fluoride hydrolysis provides a mechanism for the complete mineralization of PFCAs to HF, CO, CO2, COF2, and CF2 during thermal decomposition in the presence of water vapor. These results provide a theoretical basis for future detailed chemical kinetic studies of incineration reactors and will assist in their design and optimisation so as to more efficiently decompose PFCAs and related waste.
Collapse
Affiliation(s)
- M Yasir Khan
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| | - Jiaou Song
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| | - Milad Narimani
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
41
|
Yang L, Ji H, Liang H, Yuan W, Song X, Li X, Niu J, Shi H, Wen S, Miao M. Associations of perfluoroalkyl and polyfluoroalkyl substances with gestational hypertension and blood pressure during pregnancy: A cohort study. ENVIRONMENTAL RESEARCH 2022; 215:114284. [PMID: 36088993 DOI: 10.1016/j.envres.2022.114284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have reported inconsistent associations between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and gestational hypertension (GH) and blood pressure (BP) during pregnancy. Herein, we aimed to evaluate individual and overall effects of PFAS on GH and longitudinal BP measures during pregnancy. We included 826 pregnant women from the Jiashan Birth Cohort established between 2016 and 2018. Concentrations of thirteen PFAS were quantified using plasma samples collected within 16 weeks of gestation. Longitudinal BP measures were obtained from medical records, and more than nine measurements were available for 85.60% of participants. GH was defined as new-onset hypertension occurring after 20 weeks of gestation. Logistic regression models were used to examine the effect of PFAS on GH, while generalized estimating equation models evaluated the average effect of PFAS on BP in each trimester. The potential effect modification by fetal sex was also examined. Bayesian kernel machine regression (BKMR) and quantile g-computation (QgC) were implemented to explore the overall effect of the PFAS mixture. PFOA, PFOS, and PFHxS presented the highest median concentrations of 11.99, 8.81 and 5.43 ng/mL, respectively. Overall, 5.57% of subjects developed GH. PFOS, PFDA, PFUdA, and PFDoA were significantly associated with lower GH odds, and odds ratios ranged between 0.62 and 0.68. We noted associations between PFAS and lower systolic BP and diastolic BP in the third trimester, with PFDA and PFUdA exhibiting the effect on systolic BP only in pregnant women carrying a female fetus. These associations were further confirmed by BKMR and QgC, showing an inverse overall effect of the PFAS mixture. Higher concentrations of PFAS during early pregnancy were associated with lower GH risk and longitudinal BP measures in the third trimester in a population with relatively high exposure levels. Fetal sex might modify the effects of PFDA and PFUdA on systolic BP in the third trimester.
Collapse
Affiliation(s)
- Lan Yang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Xiuxia Song
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Xiufeng Li
- Jiashan Maternal and Child Health Hospital, Jiaxing, 314199, China
| | - Jinbo Niu
- Jiashan First People's Hospital, Jiaxing, 314199, China
| | - Huijuan Shi
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Lang JR, McDonough J, Guillette TC, Storch P, Anderson J, Liles D, Prigge R, Miles JAL, Divine C. Characterization of per- and polyfluoroalkyl substances on fire suppression system piping and optimization of removal methods. CHEMOSPHERE 2022; 308:136254. [PMID: 36108758 DOI: 10.1016/j.chemosphere.2022.136254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Fire suppression systems are known to be impacted with residual, entrained per- and polyfluoroalkyl substances (PFASs) because of historical use of aqueous film forming foam (AFFF) and fluoroprotein foam. Amphiphilic PFASs aggregate at liquid:solid interfaces creating a hydrophobic layer which reduces the effectiveness of water to remove PFAS from layered surfaces. When fire suppression systems are transitioned to fluorine free foam (F3) without appropriate cleaning, residual PFASs associated with the surfaces of the fire suppression system can contaminate the replacement F3. Release of residual PFASs from fire suppression systems into F3 has been documented; however, little is known about the residual PFASs associated with the surfaces of the fire suppression systems. More information is needed to develop methods to appropriately remove PFASs from fire suppression systems to prevent costly and inefficient foam transitioning and preserve the PFAS-free benefit of F3. The objective of this work was to evaluate the distribution and composition of PFASs on hangar piping exposed to PFAS-containing firefighting foam for a prolonged period. Two assessment methods were used: 1) extractions with methanol, water, and a proprietary aqueous organic solvent (Fluoro Fighter™); and 2) direct imaging methods of the surface. Extractions were analyzed with mass spectrometry and combustion ion chromatography. Results indicate pipe in contact with PFAS-containing firefighting foam can amass approximately 10 μg/cm2 of surface-associated PFAS residual following decades of exposure. Fluoro Fighter demonstrated higher PFAS removal per surface area of pipe than methanol (p = 0.007) or water extraction (p < 0.0001). Scanning electron microscope (SEM) images of the hangar piping reveal deposits suspected to be self-assembled PFAS layers, as evidenced by examination of pipe surfaces using X-ray photoelectron spectroscopy (XPS), which revealed atomic fluorine on the surface of the pipe.
Collapse
Affiliation(s)
- Johnsie R Lang
- Arcadis G&M of North Carolina, Inc., 5420 Wade Park Boulevard, Suite 350, Raleigh, NC, 27607, USA.
| | | | - T C Guillette
- Arcadis G&M of North Carolina, Inc., 5420 Wade Park Boulevard, Suite 350, Raleigh, NC, 27607, USA.
| | - Peter Storch
- Arcadis, 120 Edward Street, Brisbane Queensland 4000, Australia.
| | - John Anderson
- Arcadis, 482 Congress Street, Suite 501, Portland, ME 04101, USA.
| | - David Liles
- Arcadis G&M of North Carolina, Inc., 4915 Prospectus Drive Unit G, Durham, NC, 27713, USA.
| | - Robert Prigge
- Arcadis G&M of North Carolina, Inc., 4915 Prospectus Drive Unit G, Durham, NC, 27713, USA.
| | | | | |
Collapse
|
43
|
Parker BA, Knappe DRU, Titaley IA, Wanzek TA, Field JA. Tools for Understanding and Predicting the Affinity of Per- and Polyfluoroalkyl Substances for Anion-Exchange Sorbents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15470-15477. [PMID: 36265138 DOI: 10.1021/acs.est.1c08345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anion-exchange (AE) sorbents are gaining in popularity for the remediation of anionic per- and polyfluoroalkyl substances (PFAS) in water. However, it is unclear how hydrophobic and electrostatic interactions contribute to anionic PFAS retention. The goal of this study was to understand the effects of PFAS chain length and head group on electrostatic interactions between PFAS and an aminopropyl AE phase. Liquid chromatography-mass spectrometry (LC-MS) was used with an aminopropyl AE guard column to find relative retention times. The average electrostatic potential (EPavg) of each PFAS was calculated, which correlated positively with the PFAS chromatographic retention time, demonstrating the value of EPavg as a proxy for predicting electrostatic interactions between PFAS and the aminopropyl AE phase. The order of greatest to lowest PFAS AE affinity for an aminopropyl column based on chromatographic retention times and electrostatic interactions was n:3 fluorotelomer carboxylic acids (n:3 FtAs) > n:2 fluorotelomer carboxylic acids (n:2 FtAs) > perfluoroalkyl carboxylates (PFCAs) > perfluoroalkyl sulfonamides (FASAs) ∼ n:2 fluorotelomer sulfonates (n:2 FtSs) > perfluoroalkyl sulfonates (PFSAs). This study introduces a methodology for qualitatively characterizing electrostatic interactions between PFAS and AE phases and highlights that electrostatic interactions alone cannot explain the affinity of PFAS for AE resins in water treatment/remediation scenarios.
Collapse
Affiliation(s)
- Bethany A Parker
- Department of Chemistry, Oregon State University, Corvallis, Oregon97331, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina27695-8201, United States
| | - Ivan A Titaley
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon97331, United States
| | - Thomas A Wanzek
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon97331, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon97331, United States
| |
Collapse
|
44
|
Wang X, Huang M, Su Z, Qian L, Guo Y, Chen Q, Wu C, lv T, Su Q, Shen Q, Ma J. Surface activity of a series of fluoroether betaine amphoteric surfactants: Oxygen Roles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Lai TT, Kuntz D, Wilson AK. Molecular Screening and Toxicity Estimation of 260,000 Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) through Machine Learning. J Chem Inf Model 2022; 62:4569-4578. [PMID: 36154169 DOI: 10.1021/acs.jcim.2c00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of chemicals widely used in industrial applications due to their exceptional properties and stability. However, they do not readily degrade in the environment and are linked to contamination and adverse health effects in humans and wildlife. To find alternatives for the most commonly used PFAS molecules that maintain their desirable chemical properties but are not adverse to biological lifeforms, a novel approach based upon machine learning is utilized. The machine learning model is trained on an existing set of PFAS molecules to generate over 260,000 novel PFAS molecules, which we dub PFAS-AI-Gen. Using molecular descriptors with known relationships to toxicity and industrial suitability followed by molecular docking and molecular dynamics simulations, this set of molecules is screened. In this manner, increasingly complex calculations are performed only for candidate molecules that are most likely to yield the desired properties of low binding affinity toward two selected protein receptors, the human pregnane x receptor (hPXR) and peroxisome proliferator-activated receptor γ (PPAR-γ), and high industrial suitability, defined by critical micelle concentration (CMC). The selection criteria of low binding affinity and high industrial suitability are relative to the popular PFAS alternative GenX. hPXR and PPAR-γ are selected as they are PFAS targets and facilitate a variety of functions, such as drug metabolism and glucose regulation, respectively. Through this approach, 22 promising new PFAS substitutes that may warrant experimental investigation are identified. This integrated approach of molecular screening and toxicity estimation may be applicable to other chemical classes.
Collapse
Affiliation(s)
- Thanh T Lai
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - David Kuntz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
46
|
Kumar A, Krishna, Sharma A, Dhankhar J, Syeda S, Shrivastava A, Sharma SK. Self‐Assembly and Transport Behaviour of Non‐ionic Fluorinated and Alkylated Amphiphiles for Drug Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anoop Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Krishna
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Antara Sharma
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Jyoti Dhankhar
- Department of Zoology University of Delhi Delhi 110007 India
| | - Saima Syeda
- Department of Zoology University of Delhi Delhi 110007 India
| | | | - Sunil K. Sharma
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
47
|
Vatankhah H, Tajdini B, Milstead RP, Clevenger E, Murray C, Knappe D, Remucal CK, Bellona C. Impact of ozone-biologically active filtration on the breakthrough of Perfluoroalkyl acids during granular activated carbon treatment of municipal wastewater effluent. WATER RESEARCH 2022; 223:118988. [PMID: 36007399 DOI: 10.1016/j.watres.2022.118988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The presence of perfluoroalkyl acids (PFAAs) in municipal wastewater has highlighted the need to develop PFAA treatment approaches for wastewater effluent and potable reuse applications. Ozone (O3) and biologically active filtration (BAF) were investigated as standalone and combined pretreatment processes to improve the performance of granular activated carbon (GAC) for PFAA removal from wastewater effluent. As individual processes, ozonation at all three investigated doses (0.35, 0.75, 1.0 mg O3/mg DOC) and BAF at both tested empty bed contact times (EBCT; 15 and 20 min) led to significant improvement in PFAA removal by subsequent GAC treatment. With respect to standalone ozonation, the specific O3 dose of 0.75 mg O3/mg DOC was proven to be the optimum operating condition as further increase of the specific ozone dose to 1.0 mg O3/mg DOC did not provide considerable additional improvement. Extending the EBCT during standalone BAF from 15 to 20 minutes significantly improved the efficacy of GAC for the removal of tested PFAAs. Pretreatment with O3-BAF (0.75 mg O3/mg DOC; 20 min EBCT) in tandem outperformed both standalone ozonation and BAF for the removal of PFAA by GAC. Characterization of effluent organic matter (EfOM) by size exclusion chromatography (SEC) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) before and after pretreatments suggest that among multiple co-occurring phenomena, the shift towards smaller and more polar EfOM may have predominantly alleviated pore constriction/blockage without having adverse impact on direct site competition. This observation is supported by SEC and FT-ICR-MS results indicating reduced EfOM molecular size through O3 and BAF pretreatment as well as transition to more hydrophilic byproducts.
Collapse
Affiliation(s)
- Hooman Vatankhah
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Bahareh Tajdini
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Reid P Milstead
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erica Clevenger
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Conner Murray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Detlef Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christopher Bellona
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA.
| |
Collapse
|
48
|
Eun H, Yamazaki E, Pan Y, Taniyasu S, Noborio K, Yamashita N. Evaluating the Distribution of Perfluoroalkyl Substances in Rice Paddy Lysimeter with an Andosol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610379. [PMID: 36012013 PMCID: PMC9408263 DOI: 10.3390/ijerph191610379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 05/14/2023]
Abstract
The properties of potential emerging persistent contaminants, perfluoroalkyl substances (PFAS), in an andosol rice paddy lysimeter were analyzed to determine their mobility and leaching behavior regarding carbon chain length and functional groups. For this purpose, simulated contaminated water (ΣPFAS = 1,185,719 ng/L) was used in the lysimeter. The results showed that PFAS distribution in the paddy soil lysimeter was influenced by the migration of these substances into irrigation water and their adsorption into the soil. PFHxS (C6) and PFOS (C8), which are the main components of the simulated contaminated water, were mostly captured in the soil layers of the low-humic andosol layer (0-35 cm). PFAS distribution may depend on soil properties, such as total carbon (TC) content. Compared with perfluoroalkane sulfonic acids (PFSAs), the distribution of perfluoroalkyl carboxylic acids (PFCAs) in soil showed significant variation. The remaining PFCAs were distributed across all layers of the lysimeter, except for the longer-chain PFCAs. Moreover, the PFSA distribution was directly correlated with the carbon chain number, whereby longer- and shorter-chain PFSAs accumulated in the top and bottom soil layers, respectively. This study provides detailed information on the distribution, leaching, uptake, and accumulation of individual PFAS in andosol paddy fields in Japan.
Collapse
Affiliation(s)
- Heesoo Eun
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba 305-8604, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-838-8339
| | - Eriko Yamazaki
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
| | - Yu Pan
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
| | - Kosuke Noborio
- Department of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Kawasaki 214-8571, Kanagawa, Japan
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
| |
Collapse
|
49
|
Hua ZL, Wang YF, Zhang JY, Li XQ, Yu L. Removal of perfluoroalkyl acids and dynamic succession of biofilm microbial communities in the decomposition process of emergent macrophytes in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155295. [PMID: 35439517 DOI: 10.1016/j.scitotenv.2022.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging contaminants that pose significant environmental and health concerns. Water-sediment-macrophyte residue systems were established to clarify the removal efficiency of PFAAs, explore possible removal pathways, and profile the dynamic succession of biofilm microbial communities in the decomposition process. These systems were fortified with 12 PFAAs at three concentration levels. Iris pseudacorus and Alisma orientale were selected as the decomposing emergent macrophytes. The removal rates in the treatments with residues of I. pseudacorus (IP) and A. orientale (AO) were 34.4% to 88.9% and 36.5% to 89.9%, respectively, which were higher than those in the control groups (CG) (30.3% to 86.9%), suggesting that decomposition could alter the removal of PFAAs. Sediment made the greatest contributions (preloaded 14.5% to 77.8% of PFAAs in IP, 14.3% to 78.2% in AO, and 27.4% to 71.9% in CG). PFAAs could also be removed by macrophyte residue sorption (0.0190% to 13.0% in IP and 0.016% to 15.6% in AO) and bioaccumulation of residual biofilm (the contributions of biofilm microbes and their extracellular polymeric substances were 0.0110% to 3.93% and 0.918% to 34.4%, respectively, in IP and 0.0141% to 4.65% and 1.49% to 34.1%, respectively, in AO). Significant correlations were observed between sediment/residue adsorption and bioaccumulation of biofilm microbes, and were significantly correlated with perfluoroalkyl chain length (p < 0.05). The dynamic succession of residual biofilm microbial communities was investigated. The largest difference was found at the preliminary stage. The most similar communities were found in AO on day 70 (with specific genera Macellibacteroides and WCHB1-32) and in IP on day 35 (with specific genera Aeromonas and Flavobacterium). This study is useful to understand the removal of PFAAs during the decomposition process, providing further assistance in removing PFAAs during the life cycle of macrophytes in wetlands.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Yi-Fan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| |
Collapse
|
50
|
Abstract
Perfluorination gives cubane the capacity to host an extra electron in its inner structure.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 67034 Strasbourg, France
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste-Croix-aux-Mines, France
| |
Collapse
|