1
|
Ivanic FM, Butler M, Borón CI, Candal RJ. Assessing the transformation products and fate of Oxytetracycline by simulated aerobic degradation tests. CHEMOSPHERE 2023; 343:140284. [PMID: 37758075 DOI: 10.1016/j.chemosphere.2023.140284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Oxytetracycline (OTC) is a widely used broad-spectrum antibiotic, whose presence in water and sediments was reported in various regions of the world. The effects of OTC and other tetracyclines on the environment have been intensively studied although many of their transformation products (TPs) formed in the environment and their impact have not been yet fully characterized. Abiotic and biotic degradation tests under aerobic conditions at two pH values were carried out using OTC in artificial water/sediment systems to assess the effect of these variables on the environmental fate of the pollutant. HPLC-MSn was employed to detect and identify the main degradation products and pathways. Several transformations involved in the process were identified including alcohol oxidation, decarbonylation and hydroxylation. Differences in TPs and kinetics were found among degradation conditions, remarking a faster degradation of both OTC and TPs in the presence of microorganisms and at lower pH values. In summary, a total of 44 TPs were detected and structures were proposed for 20 of them, none of them having been previously reported. Furthermore, OTC degradation generated 24 TPs which remained in either solution or sediment, although none of them displayed higher algae toxicity than OTC. These results might be useful for planning future remediation and monitoring strategies.
Collapse
Affiliation(s)
- Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
| | - Carlos I Borón
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Du R, Duan L, Zhang Q, Wang B, Huang J, Deng S, Yu G. Analysis on the attenuation characteristics of PPCPs in surface water and their influencing factors based on a compilation of literature data. WATER RESEARCH 2023; 242:120203. [PMID: 37336183 DOI: 10.1016/j.watres.2023.120203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The attenuation characteristics of PPCPs play an important part in predicting their environmental concentrations. However, considerable uncertainty remains in reported laboratory data on the attenuation characteristics of PPCPs. In this analysis, we compile information on laboratory-observed photodegradation half-lives (t1/2), biodegradation t1/2, the organic carbon normalized adsorption constant (KOC) and field-observed overall attenuation t1/2 for PPCPs in water bodies from more than 200 peer-reviewed studies. To mitigate the effects of such uncertainty, we derive representative values (RV) for PPCP degradability from these records to better compare the characteristics of different PPCPs. We further examine the influence of experimental conditions and environmental drivers on the determination of t1/2 using difference analysis and correlation analysis. The results indicate that for laboratory photodegradation tests, different light sources, initial concentration and volume significantly affect t1/2, whereas there is no significant difference between values obtained from tests conducted in pure water and natural water. For biodegradation, laboratory-measured t1/2 values in batch, flume and column studies gradually decrease, marking the controlling role of experimental setup. Redox condition, initial concentration and volume are also recognized as important influencing factors. For adsorption, water-sediment ratio is the primary reaction parameter. As two frequently investigated factors, however, pH and temperature are not significant factors in almost all cases. In field observations, the persistence of carbamazepine, typically used as a tracer, is in doubt. Water depth and latitude are the most correlated drivers of t1/2, indicating the predominant status of photodegradation in the overall attenuation rates. These findings call for caution when selecting experimental parameters and environmental drivers in determining PPCP's attenuation rates and establishing PPCP fate models in the field.
Collapse
Affiliation(s)
- Roujia Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China.
| |
Collapse
|
3
|
Li S, Xu Y, Liang C, Wang N, Song S, Peng L. Enhanced biodegradation of ciprofloxacin by enriched nitrifying sludge: assessment of removal pathways and microbial responses. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:409-419. [PMID: 35050892 DOI: 10.2166/wst.2021.609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotics are mostly collected by sewage systems, but not completely removed within wastewater treatment plants. Their release to aquatic environment poses a great threat to public health. This study evaluated the removal of a widely used fluoroquinolone antibiotic, ciprofloxacin, in enriched nitrifying culture through a series of experiments by controlling ammonium concentrations and inhibiting functional microorganisms. The removal efficiency of ciprofloxacin at an initial concentration of 50 μg L-1 reached 81.86 ± 3.21% in the presence of ammonium, while only 22.83 ± 8.22% of ciprofloxacin was removed in its absence. A positive linear correlation was found between the ammonia oxidation rate (AOR) and ciprofloxacin biodegradation rate. These jointly confirmed the importance of the AOB-induced cometabolism in ciprofloxacin biodegradation, with adsorption and metabolic degradation pathways playing minor roles. The continuous exposure of AOB to ciprofloxacin led to decreases of ammonia monooxygenase (AMO) activities and AOR. The antibacterial effects of ciprofloxacin and its biodegradation products were further evaluated and the results revealed that biodegradation products of ciprofloxacin exhibited less toxicity compared to the parent compound, implying the potential application of cometabolism in alleviation of antimicrobial activity. The findings provided new insights into the AOB-induced cometabolic biodegradation of fluoroquinolone antibiotics.
Collapse
Affiliation(s)
- Shengjun Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ning Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China E-mail: ; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; Shenzhen Research Institute, Wuhan University of Technology, Gaoxin South Fourth Road 19, Yuehai Street, Nanshan District, Shenzhen 518063, China
| |
Collapse
|
4
|
Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Shree P, Sharma N, Singh DK. Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractAntibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary medicines and their persistence in the environment. The global concern of antibiotic contamination to different environmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the environment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic remediation, and metabolomics for the cleaner and safer environment.
Collapse
|
5
|
Liu L, Chen X, Wang Z, Lin S. Removal of aqueous fluoroquinolones with multi-functional activated carbon (MFAC) derived from recycled long-root Eichhornia crassipes: batch and column studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34345-34356. [PMID: 31428965 DOI: 10.1007/s11356-019-06173-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Fluoroquinolones (FQs) occur broadly in natural media due to its extensive use, and it has systematic effects on our ecosystem and human immunity. In this study, long-root Eichhornia crassipes was reclaimed as a multi-functional activated carbon (MFAC) to remove fluoroquinolones (FQs) from contaminated water. To get insight into the adsorption mechanism, multiple measurements, including FTIR and XPS analyses, were employed to investigate the adsorption processes of ciprofloxacin and norfloxacin as well as the experiments of effect of exogenous factors on adsorption performances. The results confirmed that the adsorption of FQs by MFAC was mainly attributed to the electrostatic interaction, hydrogen bond interaction, and electronic-donor-acceptor (EDA) interaction. In addition, the kinetics and thermodynamics experiments demonstrated that the MFAC possessed great adsorption performance for FQs. According to the Langmuir model, the saturated adsorption capacities exceeded 145.0 mg/g and 135.1 mg/g for CIP and NOR at 303.15 K, respectively. The column experiments were conducted to explore the application performance of MFAC on the advanced treatment of synthetic water at different flow rates and bed depths. The adsorption capacity of CIP on MFAC was estimated by the Thomas models and the bed-depth service time (BDST) models, reaching 127.56 mg/g and 11,999.52 mg/L, respectively. These results also provide a valid approach for the resource recycling of the redundant long-root Eichhornia crassipes plants. Graphical abstract.
Collapse
Affiliation(s)
- Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai, China
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Sen Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, China.
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
6
|
Deng J, Zhou L, Sanford RA, Shechtman LA, Dong Y, Alcalde RE, Sivaguru M, Fried GA, Werth CJ, Fouke BW. Adaptive Evolution of Escherichia coli to Ciprofloxacin in Controlled Stress Environments: Contrasting Patterns of Resistance in Spatially Varying versus Uniformly Mixed Concentration Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7996-8005. [PMID: 31269400 DOI: 10.1021/acs.est.9b00881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A microfluidic gradient chamber (MGC) and a homogeneous batch culturing system were used to evaluate whether spatial concentration gradients of the antibiotic ciprofloxacin allow development of greater antibiotic resistance in Escherichia coli strain 307 (E. coli 307) compared to exclusively temporal concentration gradients, as indicated in an earlier study. A linear spatial gradient of ciprofloxacin and Luria-Bertani broth (LB) medium was established and maintained by diffusion over 5 days across a well array in the MGC, with relative concentrations along the gradient of 1.7-7.7× the original minimum inhibitory concentration (MICoriginal). The E. coli biomass increased in wells with lower ciprofloxacin concentrations, and only a low level of resistance to ciprofloxacin was detected in the recovered cells (∼2× MICoriginal). Homogeneous batch culture experiments were performed with the same temporal exposure history to ciprofloxacin concentration, the same and higher initial cell densities, and the same and higher nutrient (i.e., LB) concentrations as in the MGC. In all batch experiments, E. coli 307 developed higher ciprofloxacin resistance after exposure, ranging from 4 to 24× MICoriginal in all replicates. Hence, these results suggest that the presence of spatial gradients appears to reduce the driving force for E. coli 307 adaptation to ciprofloxacin, which suggests that results from batch experiments may over predict the development of antibiotic resistance in natural environments.
Collapse
Affiliation(s)
- Jinzi Deng
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78705 United States
| | - Robert A Sanford
- Department of Geology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
| | - Lauren A Shechtman
- Department of Chemistry , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
- Department of Integrative Biology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
| | - Yiran Dong
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
- School of Environmental Studies , China University of Geosciences (Wuhan) , Wuhan , 430074 , China
| | - Reinaldo E Alcalde
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78705 United States
| | - Mayandi Sivaguru
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
| | - Glenn A Fried
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
| | - Charles J Werth
- Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78705 United States
| | - Bruce W Fouke
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
- Department of Geology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
- Department of Microbiology , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 United States
| |
Collapse
|
7
|
Wang S, Cui Y, Li A, Wang D, Zhang W, Chen Z. Seasonal dynamics of bacterial communities associated with antibiotic removal and sludge stabilization in three different sludge treatment wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:231-237. [PMID: 30952043 DOI: 10.1016/j.jenvman.2019.03.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
In this study, antibiotics removal, sludge stabilization and the change in the bacterial community in sludge treatment wetlands (STWs) were investigated in different seasons. Pilot-scale STWs were characterized for sludge stabilization and the fate of antibiotics in surplus sludge applied during different seasons in three different configurations. The three configurations were unit S1 with ventilation, unit S2 with ventilation and reed plantings and unit S3 with reed plantings. The antibiotics used were ciprofloxacin, azithromycin and oxytetracycline and their degradation, degree of sludge stabilization and bacterial community dynamics were monitored. The results showed that the removal of antibiotics and reduction in the amount of organics in the planted units S2 and S3 were higher than those in the unplanted unit S1, especially in summer. The antibiotic removal efficiency in the planted unit S2, which was equipped with aeration tubes, was the highest over the entire test period. Bacterial community was analyzed by IlluminaMiSeq sequencing of the 16SrRNA gene, showed that the presence of plants in STWs enhanced microbial diversity and richness which promote the removal of antibiotics and sludge stabilization. Proteobacteria, Bacteroidetes and Firmicutes were dominant in the bacterial communities, with Thiobacillus, Dechloromonas and Pseudomonas occurring as dominant genera.
Collapse
Affiliation(s)
- Shiquan Wang
- School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China; College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Aimin Li
- School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China
| | - Dong Wang
- School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China
| | - Wanjun Zhang
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
8
|
Junker T, Coors A, Schüürmann G. Compartment-Specific Screening Tools for Persistence: Potential Role and Application in the Regulatory Context. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:470-481. [PMID: 30638305 DOI: 10.1002/ieam.4125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The persistence assessment under the European Union regulation Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) relies on compartment-specific degradation half-lives derived from laboratory simulation studies with surface water, aquatic sediment, or soil. Although these data are given priority, they are not available for most of the compounds. Therefore, according to the Integrated Assessment and Testing Strategy (ITS) for persistence assessment, results from ready biodegradability tests (RBTs) are used within a persistence screening to decide whether a substance is considered as "not persistent" or "potentially persistent." However, ready biodegradability is currently tested only in water. Consequently, there is a lack of approaches that include the soil and sediment compartments for persistence assessment at the screening level. In previous studies, compartment-specific screening tools for water-sediment (Water-Sediment Screening Tool [WSST]) and soil (Soil Screening Tool [SST]) were developed based on the existing test guideline Organisation for Economic Development and Co-operation (OECD TG 301C [MITI (Ministry of International Trade and Industry, Japan) test]). The test systems MITI, WSST, and SST were successfully applied to determine sound and reliable biodegradation data for 15 test compounds. In the present study, these results are used within the scope of a new alternative persistence screening approach, the Compartment-Specific Persistence Screening (CSPS). Compared to the persistence screening under REACH, the CSPS is a more conservative approach that provides additional reasonable results, particularly for compounds that sorb to sediment and soil, and for which the current standard persistence screening might be insufficient. Thus, the CSPS can be used to identify potentially persistent and nonpersistent compounds in the regulatory context by a comprehensive assessment that includes water, soil, and sediment. Moreover, experimentally determined half-lives from the compartment-specific screening tools can be used as input for multimedia models that estimate, for example, overall persistence (Pov ). The application of fixed half-life factors to extrapolate from water to soil and sediment, which is here demonstrated to be inappropriate, can thereby be avoided. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Anja Coors
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
9
|
Yan W, Wang S, Ding R, Tian X, Bai R, Gang H, Yan W, Xiao Y, Zhao F. Long-term operation of electroactive biofilms for enhanced ciprofloxacin removal capacity and anti-shock capabilities. BIORESOURCE TECHNOLOGY 2019; 275:192-199. [PMID: 30590205 DOI: 10.1016/j.biortech.2018.12.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Few studies have focused on the feasibility of microbial fuel cells (MFCs) for removing quinolones antibiotics and their anti-shock capabilities. After 1.5 years of operation, the removal efficiency of 10 mg/L ciprofloxacin in MFCs increased to 99.00% in 88 h. These results are in accordance with the enhanced activity of biofilms and voltage output of MFCs. Additionally, the anti-shock capacities of the biofilms in MFCs were evaluated by treating ofloxacin and enrofloxacin and operating at different temperature and salinity. These MFCs can remove 87.31% and 40.81% of ofloxacin and enrofloxacin in 72 h, respectively. Even exposed to a low temperature of 10 °C or a salinity of 3%, the MFCs can achieve greater than 50% and nearly 80% of ciprofloxacin removal efficiency, respectively. The enrichment of Alcaligenes and Chryseobacterium contributed mostly to the removal of quinolones antibiotics. This study provides scientific evidences for treating wastewater containing quinolones antibiotics using MFCs.
Collapse
Affiliation(s)
- Weifu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China
| | - Shuhua Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaochun Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haiyin Gang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Weida Yan
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, PR China; Amperex Technology Limited, Ningde, Fujian 352106, PR China
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China.
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 PR China
| |
Collapse
|
10
|
Sharma P, Kumar D, Mutnuri S. UPLC-MS/MS method validation of ciprofloxacin in human urine: Application to biodegradability study in microbial fuel cell. Biomed Chromatogr 2018; 33:e4392. [PMID: 30239025 DOI: 10.1002/bmc.4392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022]
Abstract
To enable the reliable quantification of ciprofloxacin in human urine, a sensitive and selective assay based on liquid chromatography-tandem mass spectrometry was developed. The chromatographic separation of the ciprofloxacin was carried out on a Zorbex Eclipse C18 column using methanol and ammonium acetate as a mobile phase by the gradient elution method. The developed assay covered a wide range of concentrations (1.56-100 ng/mL) with a lower limit of detection of 0.76 ng/mL. Quantification was performed using the multiple reaction monitoring transitions 331.8/231 for ciprofloxacin and 362/318 for ofloxacin (internal standard). This assay was validated for linearity, accuracy, precision and recovery. The validated method was then applied to the biodegradability of ciprofloxacin (99%) from human urine in the microbial fuel cell.
Collapse
Affiliation(s)
- Priya Sharma
- BITS Pilani, KK Birla Goa Campus, Applied Environmental Biotechnology Laboratory, Zuarinagar, Goa, India
| | - Devendra Kumar
- BITS Pilani, KK Birla Goa Campus, Central Sophisticated Instrumentation Facility, Zuarinagar, Goa, India
| | - Srikanth Mutnuri
- BITS Pilani, KK Birla Goa Campus, Applied Environmental Biotechnology Laboratory, Zuarinagar, Goa, India
| |
Collapse
|
11
|
Zhou H, Wangjin Y, Liu J, Ying T, Xuan Y. Temporal and spatial features of selected wastewater-marking pharmaceuticals and potential mechanisms of their removal from urban rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15712-15726. [PMID: 28527142 DOI: 10.1007/s11356-017-9184-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The investigations on seasonal and spatial distribution of 12 selected wastewater-marking pharmaceuticals (WWMPs) belonging to different therapeutic classes were conducted in three major urban rivers of Yangpu District, Shanghai, East China. The potential mechanisms for the removal of WWMPs in the rivers were also experimentally investigated. The detection frequencies of most WWMPs were in the range of 56-100%, with the exception of clofibric acid, which was not detected during the storm events. The median concentrations ranged from not detected to 5821 ng/L (caffeine) and the maximum concentration was 8662 ng/L, found in caffeine. Part of WWMPs such as paracetamol and caffeine showed significant seasonal variation (P < 0.05), while most of pharmaceuticals displayed limited concentration fluctuation under different seasons for relative low levels. The spatial pattern of most WWMPs has not showed obvious difference in the three rivers (P > 0.05). WWMPs could come from different sources, such as wastewater treatment plants, hospitals, untreated domestic wastewater, or some unknown sources. Lab-scale tests showed that the biodegradation and adsorption were the main removal pathways for WWMPs with lesser contribution from photodegradation and hydrolysis.
Collapse
Affiliation(s)
- Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China.
| | - Yadan Wangjin
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| | - Jianbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| | - Tianqi Ying
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| | - Yumei Xuan
- School of Environment and Architecture, University of Shanghai for Science and Technology, No. 516, Jungong Road, Shanghai, 200093, China
| |
Collapse
|
12
|
Katagi T. Pesticide behavior in modified water-sediment systems. JOURNAL OF PESTICIDE SCIENCE 2016; 41:121-132. [PMID: 30363119 PMCID: PMC6140654 DOI: 10.1584/jpestics.d16-060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 05/29/2023]
Abstract
The standardized laboratory water-sediment study in darkness is utilized as primary information on pesticide behavior to assess its ecotoxicological impacts in the edge-of-field water bodies. The half-lives of pesticide in water and sediment are key parameters to predict its environmental concentration, and its metabolic profiles help to avoid overlooking unexpected toxicological impacts from metabolites. However, no consideration of environmental factors such as sunlight and aquatic macrophytes is included, and this may lead to a conservative assessment. We review the experimental factors in the existing standardized design and then the effects of illumination and aquatic macrophytes introduced to the water-sediment system. The effects of temperature and the water-sediment ratio should be investigated in more detail and the pesticide behavior is possibly modified by illumination via photodegradation and/or metabolism in phototrophic microorganisms. Aquatic macrophytes play a major role as an additional sorption site and in further pesticide metabolism.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3–1–98 Kasugadenaka, Konohana-Ku, Osaka 554–8558, Japan
| |
Collapse
|
13
|
Sun C, Ma Q, Zhang J, Zhou M, Chen Y. Predicting seasonal fate of phenanthrene in aquatic environment with a Markov chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16661-16670. [PMID: 27180837 DOI: 10.1007/s11356-016-6843-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Phenanthrene (Phe) with carcinogenicity is ubiquitous in the environment, especially in aquatic environment; its toxicity is greater. To help determine toxicity risk and remediation strategies, this study predicted seasonal fate of Phe in aquatic environment. Candidate mechanisms including biodegradation, sorption, desorption, photodegradation, hydrolysis and volatility were studied; the results for experiments under simulated conditions for normal, wet and dry seasons in the Yinma River Basin indicated that biodegradation in sediment, sorption, desorption, and volatility were important pathways for elimination of Phe from aquatic environment and showed seasonal variations. A microcosm which was used to mimic sediment/water system was set up to illustrate seasonal distribution and transport of Phe. A Markov chain was applied to predict seasonal fate of Phe in air/water/sediment environment, the predicted results were perfectly agreed with results of microcosm experiments. Predicted results with a Markov chain suggested that volatility and biodegradation in sediment were main elimination pathways, and contributions of elimination pathways showed seasonal variations; Phe was eliminated from water and sediment to negligible levels over around 250 h in August and over 1000 h in May; in November, Phe was eliminated from water to a negligible level while about 31 % of Phe amount still remained in sediment over 1000 h.
Collapse
Affiliation(s)
- Caiyun Sun
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| | - Qiyun Ma
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China.
| | - Mo Zhou
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| | - Yanan Chen
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| |
Collapse
|
14
|
Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7911-7918. [PMID: 26762935 DOI: 10.1007/s11356-016-6054-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Antibiotic ciprofloxacin is ubiquitous in the environment. However, little is known about ciprofloxacin dissipation by microbial community. The present study investigated the biodegradation potential of ciprofloxacin by mixed culture and the influential factors and depicted the structure of ciprofloxacin-degrading microbial community. Both the original microbiota from drinking water biofilter and the microbiota previously acclimated to high levels of ciprofloxacin could utilize ciprofloxacin as sole carbon and nitrogen sources, while the acclimated microbiota had a much stronger removal capacity. Temperature rise and the presence of carbon or nitrogen sources favored ciprofloxacin biodegradation. Many novel biotransformation products were identified, and four different metabolic pathways for ciprofloxacin were proposed. Bacterial community structure illustrated a profound shift with ciprofloxacin biodegradation. The ciprofloxacin-degrading bacterial community was mainly composed of classes Gammaproteobacteria, Bacteroidia, and Betaproteobacteria. Microorganisms from genera Pseudoxanthomonas, Stenotrophomonas, Phenylobacterium, and Leucobacter might have links with the dissipation of ciprofloxacin. This work can provide some new insights towards ciprofloxacin biodegradation.
Collapse
Affiliation(s)
- Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Bingxin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Rusen Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China
| | - Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Baoling Yuan
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, People's Republic of China.
| |
Collapse
|
15
|
Gutowski L, Olsson O, Lange J, Kümmerer K. Photolytic transformation products and biological stability of the hydrological tracer Uranine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:446-453. [PMID: 26179782 DOI: 10.1016/j.scitotenv.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC-FLD-MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC-FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR.
Collapse
Affiliation(s)
- Lukasz Gutowski
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Oliver Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Jens Lange
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE-21335 Lüneburg, Germany.
| |
Collapse
|
16
|
Gutowski L, Baginska E, Olsson O, Leder C, Kümmerer K. Assessing the environmental fate of S-metolachlor, its commercial product Mercantor Gold® and their photoproducts using a water-sediment test and in silico methods. CHEMOSPHERE 2015; 138:847-855. [PMID: 26299980 DOI: 10.1016/j.chemosphere.2015.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Pesticides enter surface and groundwater by several routes in which partition to sediment contributes to their fate by abiotic (e.g. photolysis, hydrolysis) and biotic processes. Yet, little is known about S-metolachlor (SM) transformation in water-sediment systems. Therefore, a newly developed screening water-sediment test (WST) was applied to compare biodegradation and sorption processes between pure SM and Mercantor Gold® (MG), a commercial formulation of SM. Photolysis in water was performed by Xe lamp irradiation. Subsequently, the biodegradability of SM and MG photolysis mixtures was examined in WST. The primary elimination of SM from water phase was monitored and structures of its TPs resulting from biotransformation (bio-TPs) were elucidated by LC-MS/MS. SM was extracted from sediment in order to estimate the role of sorption in WST for its elimination. A set of in silico prediction software tools was applied for toxicity assessment of SM and its bio-TPs. Obtained results suggest that the MG adjuvants do not significantly affect biodegradation, but do influence diffusion of SM into sediment. 50% of SM could not be re-extracted from sediment with 0.01 M CaCl2 aqueous solution recommended in OECD test guideline for adsorption. Neither the parent compound nor the photo-TPs were biodegraded. However, new bio-TPs have been generated from SM and MG photo-TPs due to bacterial activity in the water-sediment interphase. Moreover, according to in silico assessment of the bio-TPs the biotransformation might lead to an increased toxicity to the water organisms compared with the SM. This might raise concerns of bio-TPs presence in the environment.
Collapse
Affiliation(s)
- Lukasz Gutowski
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE - 21335 Lüneburg, Germany.
| | - Ewelina Baginska
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE - 21335 Lüneburg, Germany.
| | - Oliver Olsson
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE - 21335 Lüneburg, Germany.
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE - 21335 Lüneburg, Germany.
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, C13, DE - 21335 Lüneburg, Germany.
| |
Collapse
|